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Abstract. The article presents a comparison of results of optimized 
calculation of a truss beam which was chosen as a combined construction. 
The results of calculation of a beam are compared using the method based 
on the properties of spacer systems and the calculation of the construction 
designed in LIRA software complex. The article is dedicated to 
verification of adequacy of the results of theoretical calculations of 
construction optimization. Values of longitudinal forces and bending 
moments appearing in a truss beam are chosen as convergence criteria. 
Two variants of construction loading are considered: a truss beam exposed 
to constant load only and a truss beam exposed to constant and temporary 
load. In the case under consideration, the minimum value (weight) of 
construction is an optimality criteria, variable parameters include beam 
panel length and camber height of a trussing rod. As a result, the 
construction will be considered optimal, if bearing and maximal (between 
the pillars) bending moments are equal in it. The result of verification of 
the obtained data is the value of error. 

1 Introduction 
In solving optimal design problems, regularities are found which can be generalized to 
formulate axiomatical statements – postulates [1, 2]. Using them in creating optimization 
algorithms allows clearer understanding of ways of achieving goals, i.e. simplifying 
problem solving. 

1. Increase in the degree of equal strength generally reduces the objective function 
value. The lowest value of the objective function is reached in the system with fully equal 
strength. 

2. Increase in the number of project variables with the unchanged system of stress-strain 
state restrictions either results in decreasing of the objective function of the optimal solution 
or leaves it unchanged. 

3. With the permanent number of project variables, adding restrictions narrows the 
range of feasible solutions and cannot reduce the value of the objective function of the 
optimal solution – it either remains unchanged or increases. 
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1.1 Optimization technique 

On the basis of the above postulates, an optimization method for a truss beam is proposed, 
which is based on following aspects: 

1. In combined beam structures, the material consumption is determined by elements 
that experience a stressed state in the form of bending compression. 

2. In the elements exposed to bending compression, the reduction in the cross-section is 
determined rather by the reduction of the bending moment. 

3. Bending moments increase from the pillar to the middle of the span. 
4. Truss beams belong to spacer systems, which also include arches. Thus, both have 

some common properties, for example, in tree-hinged statically determinate arches, the 
cross-sections are affected by eccentric compression i.e. a bending moment and a 
longitudinal force appear in them. Naturally, the lower the values of bending moments are, 
the smaller the cross-sectional dimensions are, based on the strength condition, which 
means less material consumption for making the arch and less costs. Therefore, a rational or 
an optimal arch, affected, for example, only by constant load, it generally understood as an 
arch the axis of which is described as a funicular curve determined by the type of load. In 
all cross-sections of such an arch, bending moments are equal to zero and its manufacture 
requires less material then that of arches described by other curves. 

It can be assumed that truss beams also have this property under certain conditions. 
Particularly, if the lower truss boom is determined along a curve corresponding to the 
acting constant load and the braces of the beam element form a continuum with the lower 
truss boom, then bending moments in the beam elements are equal to zero. 

In fact, the truss beam design (Fig. 1) assumes that the braces of the beam element and 
lower truss boom are made in the form of a limited number of rods (pillars). As a result, 
bending moments still appear in the beam – negative ones over the pillars and mostly 
positive between them. Their values depend on the number of pillars and their location in 
the span. The values of some moments increase, while others decrease when the position of 
the pillars changes. Rational is such an arrangement in which the absolute values of the 
moments are equalized and are the lowest [3]. 

5. Bending moments do not depend on the truss boom if the truss rod is delineated by 
the funicular curve for the three-hinged arch [4-6]. This will be seen from formulas (1) and 
(2) below 
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where max,jx  – distance from the beam beginning to the extreme in the j th panel, 
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Based on the analysis of the above positions, the method for truss beam optimization is 
proposed, which is based on the minimization not of volume, but of the bending moments 
in the beam element of construction, i.e. 

  min,max maxsup

2,,2,1culc 
 jjnj

MMM


,      (4) 

where sup
jM  – bending moment in the beam element cross-section above the j th pillar; 

max
jM  – extreme bending moment in the cross-section between ( 1j )th and the j th 

pillars (within the limits of the j th panel). 
Two optimality conditions must be satisfied herein. The first condition  

max
2

sup
2 nn MM            (5) 

must be satisfied every time. 
The second condition will be different, it is chosen depending on the type of optimized 

beam element design: 
– with constant cross-section of a beam element along the entire span length 

max
2

max
nj MM  ,   12/,,2,1  nj  ;      (6) 

– with piecewise constant cross-section of a beam element (constant in the intervals 
between the pillars) 

supmax
jj MM  ,   12/,,2,1  nj  .      (7) 

2 Calculation results 

2.1 Calculation results for a truss beam under action of constant load 

Span beam is accepted m24 ; boom m6.3f ; distributed load intensity mkN60q ; 
number of pillars connecting the beam element with the lower truss boom 6n ; beam 
material – steel (design resistance MPa200ymR ). The beam element has a rectangular 
cross-section with the height to width ratio 5bh ; pillars and lower truss beam elements 
have annular cross-section with a diameter D  and wall thickness D025.0  [7]. 

 
Fig. 1. Truss beam diagram and numbering of its elements. 

Next, we will change each value 2,,1, njz j   with the earlier chosen increment, 
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for example, m01.0 z  until a condition specified below is achieved. The rules of 
change jz  are given in the description of the optimization process [3]. 

Table 1. Calculation results. 

Approximation 
Value z, m Moments value, kNm 

1z  2z  3z  max
1M  sup

1M  max
2M  sup

2M  max
3M  sup

3M  
0 3 3 3 19.2 -126 -96 -216 -172.8 -270 

Optimal 3.11 3.60 3.88 59.5 -27.3 59.5 -48.7 58.8 -59.6 

The construction is designed and calculated in LIRA software complex to verify the 
obtained data.  

 
Fig. 2. The optimal truss beam design under action of constant load. 

Values of forces, cross-sectional areas, and volumes of lower elements on all 
optimization approximations are given in Table 2. 

Table 2. Results of the truss beam optimization. 

 Pillars Beam  
element 

Lower belt 

0 
approximation 

1 2 3 1 2 3 4 1 2 3 4 

N, kN -192 -192 -288 1280 1446 1367 1312 1280 
Mmax, kNm    270     
A, cm2 9.6 11.34 17.1 280.13 72.28 68.35 65.6 64 
V, cm3 20689.39 673014.50 171528.00 
 V=865231.9 cm3 

Optimal 
approximation 1 2 3 1 2 3 4 1 2 3 4 

N, kN -204.1 -227.5 -203.8 1217 1373 1291 1234 1217 
Mmax, kNm    59.5     
A, cm2 10.21 13.40 13.18 130.68 68.64 64.55 61.69 60.84 
V, cm3 20444.0 314014.4 163166.8 
 V=497625.2 cm3 (decreased by 45.6 %) 

As a result of calculation in LIRA software complex, a diagram of longitudinal forces (Fig. 3) 
and of bended moments (Fig. 4) were obtained. 
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Fig. 3. The diagram of longitudinal forces arising in the truss beam under action of constant load, t. 

 
Fig. 4. The bending moments diagram arising in the truss beam under action of constant load, kNm.  

Comparing the results of the design calculation with the action of constant load with the 
calculated ones, obtained an infelicity of 0.06% and 0.05%, respectively. 

2.2 Calculation results for a truss beam under action of constant and 
temporary load 

To obtain the optimal beam design, we will assume the precondition substantiated above 
[8]. In addition, we assume here that under the combined action of loads – uniform constant 
load constq  and pedestrian load constp  it would be rational to position the nodes of 
the lower boom on a square parabola, as under action of only constant load. The expression 
for determining the ordinates of such a curve is 

 
2

4

 xfxy  ,          (8) 

where f  –theoretical sagitta of parabola, on which the nodes of the lower boom are 
positioned. 

Considering (8), influence line ordinates (9)–(13) are: 
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On the basis of the properties of truss beams described above, we can formulate the 
following algorithm for choosing the optimal panel dimensions jz , 2/,,2,1 nj  . 

The arrangement of nodes is optimal if all values of the maximum span moments 
 max,

max
j

pq
jj xMM   and all values of the moments at support  j

pq
jj xMM sup  have 

minimum values. The experience of optimizing the truss beam under action of constant 
load shows that in such case, these moments become approximately equal, which means 
equal strength of the system. 

The following actions are performed to achieve these conditions. 
The initial values are chosen jz , for example, 
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The process continues until jx  reaches some values limited by the design features of 
the system, for example, 22/ nx . Values jz , 2/,,1 nj   obtained at the last 

approximation are accepted as optimal opt
jz . 

The proposed algorithm is used to optimize the truss beam given above with the 
calculation of the structure under action of constant load (Fig. 1) with the same dimensions 
and initial data. Moving load is accepted mtfqppp /621  . Initial values 

mzzz 3)0(
3

)0(
2

)0(
1  . The obtained optimization results are given in Table 3. 

Table 3. Calculation results. 

 z        M maxM , kNm supM , kNm 
mz 50.41   671.4 -673.8 
mz 58.22   673.7 -673.6 
mz 70.33   600.1 -276.0 

The construction is designed and calculated in LIRA software complex to verify the 
obtained data. 

 
Fig. 5. The optimal truss beam design under action of constant and temporary load. 

The calculation results on the initial (at (0)
jz ) and the final (at opt

jz ) optimization 
approximation are shown in Table 4. 

Table 4. Results of optimization of the truss beam. 

 Pillars Beam  
element 

Lower belt 

0 
approximation 

1 2 3 1 2 3 4 1 2 3 4 

N, kN -384 -384 -576 2560 2891 2734 2324 2560 
Mmax, kNm    1014     
A, cm2 19.2 19.2 28.8 657.8 144.6 136.7 131.2 128 
V, cm3 35856 1578656 343056 
 V=1957568 cm3 

Optimal 
approximation 1 2 3 1 2 3 4 1 2 3 4 

N, kN -429.2 -380.7 -372.2 2425 2698 2539 2453 2425 
Mmax, kNm    673.8     
A, cm2 21.46 19.04 21.73 518.23 134.9 127.0 122.7 121.3 
V, cm3 36305.6 1243751.0 325089.1 
 V=1605146 cm3 (decreased by 18 %) 
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Conclusion  
Analysis of the possibilities of structure designing in LIRA software complex suggested 
that in this software complex, only the pedestrian load cannot be applied during calculating 
the mobile load. The calculation will be carried out only when the structure is loaded with 
vehicle or rolling stock mobile load, and the pedestrian load will be considered as an 
additional one within the sidewalks [9, 10].  

The proposed optimization algorithm for combined structures allows calculating the 
design when any kinds of loads and their combinations are applied. The results are verified 
for compliance with the conditions of strength limitations, stability and structural flexibility 
limitations of the rods. 
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