ТВЕРДОМЕТРИЯ

УДК 620.178.15

ЕДИНЫЙ ПОДХОД К ОПРЕДЕЛЕНИЮ ПОВЕРХНОСТНОЙ, ПРОЕКЦИОННОЙ И ОБЪЕМНОЙ ТВЕРДОСТИ МАТЕРИАЛОВ В МАКРО-, МИКРО- И НАНОДИАПАЗОНАХ

В.И. Мощенок, профессор, к.т.н., ХНАДУ, Л.А. Тимофеева, профессор, д.т.н., Украинская государственная академия железнодорожного транспорта, г. Харьков

Аннотация. Предложен единый подход и формулы для определения поверхностной, проекционной и объемной твердости материалов в макро-, микро- и нанодиапазонах. Показаны достоинства разработанных расчётных методов оценки твёрдости.

Ключевые слова: поверхностная, проекционная, объемная твердость, твердость по Бринеллю, Берковичу, Виккерсу, Мейеру, Мартенсу, метод Оливера и Фарра.

ЄДИНИЙ ПІДХІД ДО ВИЗНАЧЕННЯ ПОВЕРХНЕВОЇ, ПРОЕКЦІЙНОЇ ТА ОБ'ЄМНОЇ ТВЕРДОСТІ МАТЕРІАЛІВ В МАКРО-, МІКРО- І НАНОДІАПАЗОНАХ

В.І. Мощенок, професор, к.т.н., ХНАДУ, Л.А. Тимофеєва, професор, д.т.н., Українська державна академія залізничного транспорту, м. Харків

Анотація. Запропоновано єдиний підхід і формули для визначення поверхневої, проекційної та об'ємної твердості матеріалів в макро-, мікро- і нанодіапазонах. Показано переваги розроблених розрахункових методів оцінки твердості.

Ключові слова: поверхнева, проекційна, об'ємна твердість, твердість за Брінеллем, Берковичем, Віккерсом, Мейером, Мартенсом, метод Олівера і Фарра.

COMMON METHOD FOR DETERMINING THE SURFACE, PROJECTION AND VOLUME MATERIAL HARDNESS IN THE MACRO-, MICRO- AND NANOSCALE

V. Moshchenok, Professor, Candidate of Technical Science, KhNAHU, L. Timofeeva, Professor, Doctor of Technical Science, Ukrainian State Academy of Railroad Transport, Kharkiv

Abstract. The unified principle and corresponding formulas for determining surface, projection and volume hardness of materials in macro- and micro- nanoscale is offered. The advantages of developed calculation methods for hardness determination are pointed out.

Key words: surface, projection, volume, Brinell, Berkovich, Vickers, Meyer, Martens hardness, the method of Oliver and Farr.

Введение

Современное производство тесно связано с определением твердости материалов на всех этапах своего развития. Это свойство широко используют как для оценки качества материалов после различных способов их получения и обработки, так и для массового контроля готовых изделий. Наиболее актуально определение твердости в условиях стремительного развития технологий модификации поверхности, нанотехнологий и появления новых наноматериалов. Без оценки твердости не возможна градация наноматериалов по свойствам и эспресс-оценка их эксплуатационных характеристик. Однако до настоящего времени нет обобщающей теории твердости, описывающей процессы индентирования материалов как в макро-, так в микро- и нанодиапазонах.

Анализ публикаций

Классическое определение гласит: твердость – это способность материала сопротивляться внедрению более твердого тела (индентора) [1–3]. Существующие же методы оценки твердости не совсем соответствуют выше-приведенному определению. Еще в 1940 г. профессор О'Нейль предложил следующую классификацию основных методов определения твердости [4]:

 твердость по Бринеллю (отношение нагрузки к площади поверхности отпечатка);

твердость по Мейеру (отношение нагрузки к площади проекции поверхности отпечатка);

твердость по Русселю (отношение нагрузки к объему отпечатка).

Во всех этих методах в числителе расчетных формул применяется максимальная нагрузка, прикладываемая к образцу через индентор. Однако логичнее было бы в расчётах использовать не нагрузку при внедрении индентора на максимальную глубину, а силу сопротивления его внедрению в конкретный момент времени. После выдержки под максимальной нагрузкой в определенном периоде времени (обычно 10-20 с) индентор отводят от образца и измеряют геометрические параметры получившегося в металле отпечатка, которые и используют в знаменателе расчетных формул для определения твердости. Т.е. получается, что материал уже оказал сопротивление внедрению индентора, произошло упругое восстановление отпечатка, и только после этого мы приступаем к измерению его параметров. В этом случае также логичнее было бы использовать в знаменателе формул не параметры отпечатка, а, например, параметры внедренной в материал части индентора в конкретный момент времени. Этот подход в большей мере соответствовал бы классическому определению твердости.

Дальнейшее развитие науки о твердости материалов породило не только появление новых методов ее определения, но и неточности в их названиях. Так, например, методы определения твердости по Бринеллю, Виккерсу, Берковичу получили (согласно немецкому стандарту DIN 50359) общее название – универсальная твердость [5]. Затем с 2002 г. методы Виккерса и Берковича по международному стандарту ISO 14577 были названы твердостью по Мартенсу [6]. Твердость по Мейеру, согласно этого же стандарта, получила название – твердость индентирования, разработанный хотя В CCCP 1960-е годы этот же метод был назван кинетической твердостью [7]. Измерение твердости по вышеуказанному методу, но в нанодиапазоне (глубина внедрения индентора не превышает 200 нм), известен как метод Оливера и Фарра [8]. Изменилась и сущность этого метода, заключающаяся в том, что величину максимальной нагрузки делят на площадь проекции контакта индентора с материалом.

На основе вышесказанного можно утверждать, что в настоящее время отсутствует единый подход расчёта твёрдости разными методами и существуют разночтения в формулировке термина «твёрдость», и, самое главное, все известные методы не соответствуют классическому определению этого термина.

Цель и постановка задачи

Целью настоящей работы является разработка обобщённого подхода к определению твердости материалов независимо от размерного диапазона (макро-, микро-, нано-), которые в полной мере соответствовали бы классическому определению твердости. Для достижения поставленной цели необходимо решить следующие основные задачи:

 объединить в группы известные методы определения твердости и сформулировать их обобщённые названия и сущность каждого метода;

 – разработать расчетные формулы для практической реализации этих методов;

 провести экспериментальные исследования на образцовых мерах твердости, подтверждающие целесообразность предложенных методов.

Современные методы определения твердости материалов

Все основные методы определения твердости материалов условно можно разбить на три основные группы:

1 – методы, в расчетных формулах, которых используется площадь поверхности отпечатка или внедренной части индентора; 2 – методы, в расчетных формулах которых используется площадь проекции поверхности отпечатка или внедренной части индентора;

3 – методы, в расчетных формулах которых используется объем отпечатка или внедренной части индентора.

Первую группу методов можно назвать обобщающим термином – поверхностная твердость. Под поверхностной твердостью следует понимать отношение силы сопротивления внедрению индентора к площади поверхности внедренной в материал его части. Расчет поверхностной твердости рекомендуется осуществлять по следующим формулам:

а) для индентора сферической формы

$$HB_{\rm nob}^{\rm инд} = \frac{F}{2\pi R h_{\rm инд}},\qquad(1)$$

где F – сила сопротивления внедрению индентора, H; R – радиус сферического индентора, мм; $h_{\rm инд}$ – глубина внедрения индентора в исследуемый материал, мм;

б) для пирамиды Виккерса

$$HV_{\rm nob}^{\rm uhg} = \frac{F}{26,429h_{\rm uhg}^2};$$
(2)

в) для модифицированной пирамиды Берковича

$$H \mathcal{B}_{\text{\tiny IOB}}^{\text{\tiny HH}} = \frac{F \cos \alpha}{3h_{\text{\tiny HH}}^2 \operatorname{tg} \alpha \cdot \operatorname{tg} \beta}, \qquad (3)$$

где α – угол между высотой и апофемой пирамиды; β – угол между сторонами основания пирамиды;

г) для сфероконического индентора с углом при вершине 120° и радиусом закругления вершины 0,2 мм

$$HR_{\text{nos}}^{\text{инд}120-0,2} = F / (2\pi Rh_{\text{инд}} + (10,88h_{\text{инg}}^2 + 0,668h_{\text{инg}} - 0,026)),$$
(4)

где *R* – радиус закругления вершины индентора, мм;

д) для сфероконического наноиндентора с углом при вершине 60° и радиусом закругления вершины 8,6 мкм

$$HR_{\text{пов}}^{\text{H.иHg60-8600}} = F / (2\pi Rh_{\text{инg}} + (2,09h_{\text{инg}}^2 + 22805,45h_{\text{инg}} - 10577173,84)),$$
(5)

где $h_{\rm инд}$ – глубина внедрения индентора в исследуемый материал, нм;

е) для индентора Шора (шкала А)

$$HSA_{\rm nob}^{\rm uhg} = \frac{F}{7,839h_{\rm uhg} - 1,292}.$$
 (6)

Вторую группу методов логично назвать обобщающим термином – проекционная твердость. Под проекционной твердостью следует понимать отношение силы сопротивления внедрению индентора к площади проекции внедренной в материал части индентора на поверхность образца. Рассчитывать проекционную твердость можно по следующим формулам:

а) для индентора сферической формы

$$HB_{\rm np} = \frac{F}{\pi h(2R-h)}; \qquad (7)$$

б) для пирамиды Виккерса

$$HV_{\rm np} = \frac{F}{24,5h^2}; \qquad (8)$$

в) для модифицированной пирамиды Берквича

$$HE_{\rm np}^{65,27} = \frac{F}{24,494h^2};$$
(9)

г) для сфероконического индентора

$$H_{np}^{c\phi-\kappa_{OH}} = F / (\pi (\sqrt{h_{c\phi,Max}} (2R - h_{c\phi,Max} + \frac{h_{yc,KOH}}{tg\alpha})^2), \qquad (10)$$

где $h_{c\phi, max}$ – максимальная глубина внедрения сферической части индентора; $h_{yc, кон}$ – глубина внедрения конической части индентора;

 α – половина угла между образующими усеченного конуса.

Третью группу методов можно назвать обобщающим термином – объемная твердость. Под объемной твердостью следует понимать отношение силы сопротивления внедрению индентора к объему внедренной в материал его части. Расчет объемной твердости рекомендуется производить по следующим формулам:

а) для индентора сферической формы

$$HB_{\rm o5}^{\rm uhd} = \frac{F}{1,047 \cdot h_{\rm uhd}^2 \left(3R - h_{\rm uhd}\right)}; \qquad (11)$$

б) для индентора – пирамиды Виккерса

$$HV_{\rm o6}^{\rm uhd} = \frac{F}{8,168h_{\rm uhd}^3};$$
(12)

 в) для индентора – модифицированной пирамиды Берковича

$$H \mathcal{B}_{\rm o6}^{\rm uhg} = \frac{F}{8,165 h_{\rm uhg}^3};$$
(13)

г) для сфероконического индентора с углом при вершине 120° и радиусом закругления вершины 0,2 мм

$$HR_{o6}^{\mu \mu \pi 120 - 0,2} = F / (3,1414h_{\mu \mu \pi}^{3} + 0,2906h_{\mu \mu \pi}^{2} + 0,0089h_{\mu \mu \pi} - 0,00006);$$
(14)

д) для сфероконического наноиндентора с углом при вершине 60° и радиусом закругления вершины 8,6 мкм

$$HR_{\rm o6}^{\rm H.uhd60-8600} = F / (0,349h_{\rm uhd}^3 + 9000h_{\rm uhd}^2 + +77465070h_{\rm uhd} - 52779489468),$$
(15)

где *h*_{инд} – глубина внедрения индентора в исследуемый материал, нм;

е) для индентора Шора (шкала А)

$$HSA_{\rm o6}^{\rm HHg} = \frac{F}{0.831 \cdot h_{\rm HHg}}.$$
 (16)

Для метода невосстановленного отпечатка можно также определять поверхностную, проекционную и объемную твердость по вышеуказанным формулам, подставляя вместо F – максимальную нагрузку на индентор, а вместо размеров внедренной в материал части индентора – параметры отпечатка. Если размеры отпечатка получить проблематично, особенно в микро- и нанодиапазонах, то мы рекомендуем воспользоваться разработанным нами новым методом определения твердости по последней точке контакта индентора с материалом [9].

Апробация предложенных методов оценки поверхностной и объемной твердости по вышеуказанным формулам была проведена путем вдавливания инденторов различной формы (шарики Ø2,5; Ø5 и Ø10 мм, пирамида Виккерса; сфероконический индентор с углом при вершине 120 ° и радиусом закругления вершины 0,2 мм) в образцовые меры твердости 103 HB, 176 HB и 411 HB (рис. 1, рис. 2). Как следует из полученных зависимостей, характер изменения поверхностной твердости при индентировании шариками одинаков, т.е. с увеличением глубины внедрения индентора твердость увеличивается (рис. 1).

При использовании пирамиды Виккерса и сфероконического индентора наблюдается принципиально иной характер изменения твёрдости - с увеличением глубины внедрения индентора она уменьшается. Такой характер изменения твердости получил название обратного (для инденторов – шариков) и прямого (для сфероконических и пирамидальных инденторов) размерного эффекта [10, 11]. Следует обратить внимание, что при внедрении в образец сфероконического индентора поверхностная твердость вначале увеличивается (работает сферическая часть индентора), а затем начинает уменьшаться (работают как сферическая, так и коническая части индентора).

А вот объемная твердость уменьшается с увеличением глубины внедрения любого по форме индентора (рис. 2).

И такой характер ее изменения соблюдается для различных мер твердости (рис. 2, а, б, в).

Рис. 1. Зависимость поверхностной твердости в макродиапазоне от силы сопротивления внедрению разных по форме инденторов (○10HВ – шарик Ø 10 мм; ○5HВ – шарик Ø 5 мм; ○2,5 HВ – шарик Ø 2,5 мм; ΔКА – сфероконический индентор; ◊HV– пирамида Виккерса) в образцовые меры твердости: а – 103 HB; б – 176 HB; в – 411 HB Аналогичный характер изменения поверхностной и объемной твердости был выявлен нами также в микро- и нанодиапазонах с использованием сферических, сфероконических и сферопирамидальных инденторов.

а

В

В

Рис. 2. Зависимость объемной твердости в макродиапазоне от силы сопротивления внедрению разных по форме инденторов в образцовые меры твердости: а – 103 HB; б – 176 HB; в – 411 HB

Выводы

1. Предложен единый подход к определению твердости материалов в макро-, микро- и нанодиапазонах, заключающийся в делении силы сопротивления на площадь поверхности (поверхностная твердость), площадь проекции (проекционная твердость) и объем (объемная твердость) внедренной в материал части индентора.

2. Для наиболее широко распространенных форм инденторов получены формулы для расчета поверхностной, проекционной и объемной твердости.

3. Предложенные новые методы определения твердости апробированы на стандартных образцах – мерах твердости. Обнаружены явления прямого и обратного размерных эффектов при измерениях твердости.

Литература

- Материаловедение : учебник для вузов / Б.Н. Арзамасов, В.И. Макарова, Г.Г. Мухин и др.; под общ. ред. Б.Н. Арзамасова, Г.Г. Мухина. – М.: Из-во МГТУ им. Н.Э. Баумана, 2002. – 648 с.
- Большаков В.І. Прикладне матеріалознавство : підручник для вузів / В.І. Большаков, О.Ю. Береза, В.І. Харченко. – Дніпропетровськ : РВА «Дніпро-VAL», 2000. – 290 с.
- Технология конструкционных материалов: учебник для студентов машиностроительных специальностей вузов / А.М. Дальский, Т.М. Барсукова, Л.Н. Бухаркин и др.; под ред. А.М. Дальского. – 5-е изд., исправленное – М.: Машиностроение, 2004. – 512 с.
- О'Нейль Г. Твердость металлов и ее измерение : пер. с англ. / Г. О'Нейль. – М.–Л.: Металлургиздат, 1940. – 376 с.

- 5. Testing of metallic materials Universal hardness test – Part 1: Test method : DIN 50359-1, 1997. – 15 p.
- 6. Metallic Materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method : ISO 14577. Switzerland : ISO Central Secretariat, 2002. 31 p.
- Булычев С.И. Испытание материалов непрерывным вдавливанием индентора / С.И. Булычев, В.П. Алехин. – М.: Машиностроение, 1990. – 224 с.
- 8. Oliver W.C. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments / W.C. Oliver, G. M. Pharr // J. Mater. Res. - 1992. -Vol. 7, № 6. - P. 1564–1583.
- Патент 53640 Україна, МПК G01N 3/00, G01N 3/40. Спосіб визначення твердості матеріалів / В.І. Мощенок, І.Є. Кухарева, А.В. Мощенок ; заявник та патентовласник: Харк. нац. авт.-дор. ун. – № u201005035 ; заявл. 26.04.2010 ; опубл. 11.10.2010. Бюл. №19 – 4 с.
- Sangwal K. Review: Indentation size effect, indentation cracks and microhardness measurement of brittle crystalline solids – some basic concepts and trends / K. Sangwal // Cryst. Res. Technol. – 2009. – Vol. 44, № 10. – P. 1019–1037.
- Indentation Size Effect and Microhardness Study of β-Sn Single Cristals / O. Sahin, O.Uzun, U. Kolemen et al. // CHIN. PHYS. LETT. – 2005. – Vol. 22, №12. – P. 3138–3140.

Рецензент: И.П. Гладкий, профессор, к.т.н., ХНАДУ.

Статья поступила в редакцию 20 мая 2011 г.