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In the context of Industry 4.0 concept, widely accepted and implemented, the real-
time monitoring of the industrial processes and measurement became a crucial task.
Among others, short-distance transport lines are of great importance, including the belt
conveyor systems. These can be considered the most common type of conveyors due
to their relatively low costs and easiness of maintenance [1]. However, the belts
themselves are the most complex components and thus they are the most difficult to
diagnose [2]. Monitoring and diagnosis of the belt conveyors is to ensure safety and to
eliminate the unplanned shutdowns in order to avoid significant losses [3]. Thus, the
belt conveyors must be continuously monitored, and the real-time data collected from
various sensors must be properly processed and analyzed [4]. It is expected that by the
end of 2024, worldwide expenses on the conveyor monitoring equipment can be as
high as USD 0.25 trillion [5].

Among the most popular methods of the belt conveyor monitoring ones, the non-
destructive measurements can be named. These methods allow for supervision of the
surface condition of the belt as well as its inner structure, classifying the actual state of
the belt, its layers, and adhesion between the layers [6]. A wide range of sensors can
be involved in data collection, including optical, acoustic (including ultrasonic),
electromagnetic, magnetic, radiographic (X-ray), thermographic, and strain gauge
methods.

Machine learning methods are widely applied in decision-making process of the
real-time conveyor monitoring. For instance, Zheng with co-authors used phase-
sensitive optical time domain reflectometry technology and ultra-weak fiber Bragg
gratings to capture idler vibrations [7]. The collected data underwent an automatic fault
classification using an algorithm based on self-supervised learning, which required a
small number of samples. The authors demonstrated ability of the system to extract
efficiently latent features and to reach diagnosis accuracy of 95.37%. Chamorro with
team [8] implemented multiple sensors system including camera, speed sensor, and
load cell, along with machine vision. Data was transferred to a remote receiver using
IoT gateway. Information from the sensors and machine vision systems were sent to
the cloud to monitor the actual condition of the system and to detect any potential
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failure. Andrejiova with colleagues [9] reported results of experimental research on
identification of the correlations between a significant damage occurring in conveyor
belts and the measured parameters. They used four classification models, and assigned
two determined degrees of damage (a significant or insignificant one) to the conveyor
belt tested specimens. The classification models included machine learning methods,
such as a decision trees, logistic regression, regression analysis, and the Naive Bayes
classifier. The results indicated that the tested classification models provided similar
results, but the Naive Bayes classifier showed the best prediction and classification
abilities. In turn, our team performed own experimental research with the strain gauge
based monitoring system described elsewhere [10]. For the collected data, we tested
more than 30 machine learning algorithms available in the Classification Lerner
application in the MatLab environment. The correct classification of 3 and 5 cuts, and
of the undamaged belt, was obtained in the case of decision tree models, but also
Quadratic and Cubic SVM.

From the increasing number of relevant publication it can be concluded, that
interest toward conveyor belt monitoring systems is growing, and many researchers
apply machine learning methods to classify faults of the belt conveyor systems.
Correctly classified damages in progress, belt deviation or overlapping, can prevent
from breakage or fire, increasing security and reducing the reparation costs.
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