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INTRODUCTION TO THE SUBJECT 

"The fundamental task of 
communication is the exact or 

approximate reproduction at some 
point of a message selected at 

another point." 

Claude Shannon, 1948. 

Information theory is a branch of applied mathematics, radio engineering 

(signal processing theory) and computer science that relates to the 

measurement of the quantity of information, its properties and establishes 
limit relations for data transmission systems.  

Сonsider the general scheme of data transmission (Figure 1), and briefly 

describe each block of the presented scheme.  

Source coding is used to minimise the number of bits per unit time required 

to represent the source output data. This process is known as source coding 

or data compression. Examples are Huffman coding, Lempel-Ziv algorithm. 

Encryption is used to secure the transmission of the source bits. The process 

of converting the source bits (message) into a stream of meaningless-looking 

bits (ciphertext) is called encryption. Examples: Data Encryption Standard 

(DES), RSA. 

Channel coding is used to correct errors introduced by the transmission 

medium. The process consists of introducing a number of redundant bits into 

the sequence according to a given rule to correct errors that occur. Example: 
repetition codes, Hamming codes, Reed-Muller codes, cyclic codes, CRC 

codes. 
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Modulation - the process of converting a digital signal into an analogue 

signal for transmission over a physical channel. Examples: PSK, QAM. 

Channel - the physical medium in which data is transmitted. During 

transmission, data may be distorted due to various effects: noise, 

interference, signal attenuation. Examples: binary channel (with erasure), 

channel with white noise added. 

Demodulation, channel decoding, decryption and source decoding are the 

reverse procedures for modulation, channel coding, encryption and source 

coding, respectively. 

 

Source of information  Recipient 

   

Source encoding  Decoding source 

   

Encryption  Decryption 

   

Channel coding  Channel decoding 

   

Modulation  Demodulation 

   

Information transmission medium 

Figure 1. Data transmission scheme 

Actual problems of information theory are: 

− Estimation of source and channel characteristics (entropy and 

quantity of information). 

− Data interpretation (Bayesian inference). 

− Data compression (efficient coding). 

− Error correction (noise tolerant coding). 
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TOPIC 1 
ENSEMBLES AND PROBABILITIES. BAYESIAN INFERENCE 

An ensemble X is a triple ( x, A
x
, P

x), where an outcome x is the value of some 

random variable taking one of a set of possible values Ax = a
1
, a

2
,..., a

i
,..., a

I 

with probabilities Px =  p1
, p

2
,..., p

i
,..., p

I}. 

Probability of a subset.  

If T is a subset of Ax, then 

A joint ensemble XY is an ensemble, each outcome of which is an ordered 

pair x,y each outcome is an ordered pair x,y, in which  

The probability P(x, y) is called the joint probability of x and y. In such a 
notation the comma is optional, so P(x, y) and P(xy) are the same thing. Note 

that the random variables quantities x and y included in the ensemble XY may 

not be independent.  

The probabilities of the individual quantities P(x) and P(y) included in the 

ensemble are defined through the joint probabilities of P(x) and P(y) of the 

ensemble are defined through joint probabilities as 

The probability that x equals ai given that y = bj is called the conditional 

probability and is denoted and defined as follows: 
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Multiplication rule: 

 

Summation rule: 

 

Bayes' theorem: 

 

Independence.  

Two random variables X and Y are independent if and only if 

 

Example:  

A spam filter works with 95% reliability, that is, spam messages are filtered 
with 95% probability and non-spam messages with 5% probability.  

On average, 25% of incoming messages are spam.  

What is the is the probability that the filtered message does not contain spam?  

Solution:  

Let a = 1 ‒ the message contains spam, a = 0 ‒ it does not.  

The result of filtering b =1 ‒ the message is filtered, b = 0 ‒ it is not.  

Then 

 

A priori probability of having no spam 

 

What is the overall probability of the message being filtered? 
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By Bayes formula, the probability that the filtered message did not contain 

spam: 

 

The mathematical expectation of a random variable.  

Discrete case: 

 

Continuous case: 

 

The variance of a random variable.  

Discrete case: 

 

Continuous case: 

 

Discrete distribution laws  

Bernoulli (parameter p) ‒ describes success (or failure) in a single trial: 
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Binomial law of distribution (parameters p and n) ‒ describes the number of 

successes in n independent Bernoulli trials. 

 

The geometric distribution (parameter p) is the number of attempts before 
the first success 

 

Continuous distribution laws  

Uniform distribution law on the interval [a,b] 

 

Exponential: 
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Normal: 

 

Bayesian inference  

Bayesian formula: 

 

Three problems can be solved based on the observation x1 ,..., xN  :  

- Estimation of the source distribution;  

- prediction of the outcome;  

- comparison of hypotheses. 

Task 1.  

Two people left traces of their blood at the scene of the crime. According to 

the results of the blood test of the suspect Oliver, the blood type 1 was 
determined.  In the traces at the crime scene, the blood found was of two 

groups: the first (the most common, observed in 60% of the population) and 

the fourth (rare, 1% of the population).  

Do the results obtained (blood types one and four) favour Oliver's presence 

at the crime scene or vice versa?  

Solution.  

Denote D by the data, S by the assumption of "the suspect and one other 

unknown person were present at the crime scene" and  is "two unknown 
people were present at the crime scene." 



Theory of Information and Encoding 

14 

 

It is possible to solve the previous problem in the general case for n1 blood 

samples of blood group 1 and n4 of blood group 4. Distribution of blood 

groups p1 and p4. 

 

Task 2.  

A curved coin is tossed F times. Observed a sequence of s eagles and tails, 

denoted by a and b, respectively. It is required to find out how unequal the 
results of the throws are and to predict the probability that the next throw 

will be an eagle.  

Assume that the a priori distribution is uniform, and obtain the posterior 
distribution by multiplying it by the likelihood ratio. 

Solution. 

Let H1 be our assumption. Given pa, the probability that F throws will form 

a sequence s containing Fa , Fb  eagles and tails is equal to 

 

For example, 
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In the first model, a uniform distribution is assumed for pa  

   

and 

 

Estimation of unknown parameters  

Given a string of length F in which Fa is the number of eagles and Fb is the 

number of tails, it is estimated (a) what pa might be, (b) predict whether the 

next symbol will be a or b. Predictions are usually expressed as probabilities, 
so "predicting whether the next symbol will be a "is the same as computing 

the probability that the next symbol will be a).  

Suppose that H1 is true. The posterior probability pa, given a string of length 

F that contains Fa , Fb  eagles and tails, is by Bayes' theorem equal to 

 

The multiplier P (s | pa , F, H1 ), which is a function of pa and is known as the 

likelihood function, and the a priori probability P ( pa | H1 ) are defined by 

us earlier. Thus, our estimate of pa is 

 

The normalizing constant is given by the beta integral 

 

From estimation to prediction.  

Our assumption about the next throw - the probability that its outcome is a - 
is obtained by integrating over pa.  
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This is the result of the uncertainty of pa under our assumptions. By the rule 

of summation 

The probability of occurrence of a at pa is pa, therefore 

‒ an expression known as Laplace's law. 

Model comparison 

Suppose that one scientist has suggested a different theory for our data. He 
insists that the source is not a bent coin, but a perfectly formed cube with six 

faces, one of which has an eagle and the other five have tails. Thus, the 

parameter pa, which can take any value from 0 to 1 in the original model, is 
strictly equal to 1/ 6 in the new H0 hypothesis.  

How can the two models be compared using data? It is necessary to assess 

how likely the model H1 compared to H0.  

To compare the models, write down Bayes' theorem, but this time with a 
different variable in the left-hand side. It is necessary to find out how likely 

hypothesis H1 is given the available data.  

According to Bayes' theorem 

Similarly, the posterior probability H0 is equal to 
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The normalizing constant in both cases P (s | F ) represents the overall 

probability of obtaining the observed data. If H1 and H0 are the only models 
under consideration, this probability is determined by the sum rule 

 

To calculate the posterior probabilities of hypotheses it is necessary to set 

their a priori probabilities P (H1 ) and P ( H0 ). In our case, set them equal to 

½. It is necessary to compute the data-dependent values P(s|F,H1) and 

P(s|F,H0). Сould be called these values.  

The value P(s|F,H1) is a measure of how well the data fit H1, and call this 

value the evidence of the H1 model. This value has been calculated 

previously.  

The proof of model H0 is much simpler to compute, since the model has no 
estimated parameters. Setting p0 equal to 1/6, obtain 

 

Thus, the ratio of the posterior probabilities of model H1 to model H0 is equal 

to 

 

Some values of this ratio are given in Table 1.  

Generally, with small sample sizes, the probabilities of the models are not 

too different from each other, but the larger the data, the larger this ratio can 

be. 
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Table 1. Ratio of posterior probabilities of models 

 

Test questions on the topic 

1. Definition of Ensemble of Signals. 

2. Definition of Joint Ensemble of Signals. 
3. Analytical expression of Joint probability of signals. 

4. Meaning of numerical characteristics of ensembles of signals under 

discrete distribution laws.  
5. The value of numerical characteristics of ensembles of signals at 

continuous laws of distribution.  

6. Bayes' theorem for comparison of two alternative hypotheses. 
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TOPIC 2 
ENTROPY 

The concept of entropy  

It is necessary to define quantify the information that is obtained by 

observing an of an event occurring with a given probability.  

Let a discrete probabilistic ensemble {Z, p(z)} with N possible states and a 
set of probability distributions on it p(zi)such that for all  

 

 

The first measure introduced to determine the amount of information 

obtained by observing some discrete set was a measure proposed by Hartley: 

 

where N is the number of possible outcomes. The base a determines the unit 

of information, for example, if a is 2, the unit of information will be bit, at 3 

‒ trit, at e ‒ nat, at 10 ‒ dit.  

Note that an important condition for the occurrence of information on a 

Hartley is the existence of several possible outcomes. Obviously, if the 

outcome of an event is guaranteed, don't get information from observation.  

What is the drawback of Hartley's measure? Hartley's measure does not take 

into account the fact that the probabilities pi in (1) may be different. 

Therefore, it is used only in the case of equal probability events of the set. 
For unequal probability events, the uncertainty is smaller. For example, the 

uncertainty of choice in the case of two elements with a priori probabilities 

of 0.9 and 0.1 is smaller than in the case of equally probable elements (0.5; 

0.5). Therefore, it is natural to require that the uncertainty measure be a 
continuous function of the probabilities pi of N elements.  

A measure of information satisfying this requirement is proposed by К. 

Shannon and is called entropy: 
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The most widely used binary unit of information is the bit, which will be 

used below.  

For independently realizable elements of a set, a priori private uncertainty 

can be used as a priori private uncertainty can be used as a measure: 

 

It is easy to see that the K. Shannon measure (3), which characterizes the 

uncertainty of the source as a whole, is obtained by averaging the of partial 

uncertainties (4) over all elements of the set.  

Show the connection between the K. Shannon measure and the R. Hartley 

measure. If all elements of a set are equally probable, p
i
=1/N for all  

then 

 

Thus, R. Hartley's measure is a special case of the measure of К. Shannon's 

measure for equal probability elements. It can also be shown that C. 
Shannon's measure is a generalization of Hartley's measure to the case of 

unequal probability elements. 

Properties of entropy  

1. Entropy is real and non-negative. The property is easily verified 

by formula (3) taking into account that 0  p ( zi )  1 for all 𝑖 = 1,𝑁̅̅̅̅ ̅̅ . 

2. Entropy is a finite quantity. At 0  pi  1 this property follows 

directly from formula (5). At p=0 have: 

 

(here substitute 1/p = α and further disclose the uncertainty by Lopital's rule). 

Thus, for any values 
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3. In the course of the proof of Property 2, it is easy to see that 

H(Z)=0, if the probability of one of the elements of the set is 1. 
4. Entropy is maximal when all elements of the set are equal 

probable and 

 

Іt will be searched for the maximum in (3) under the condition  

Lagrangian function for the corresponding unconditional extremum problem 

 

Necessary conditions of extremum: 

 

it follows that   

 

It is easy to verify that a given value provides the maximum. 

5. In the particular case of a set with two elements, the dependence 
of entropy on the probability of one of the elements has the form shown in 

Figure 2.  This can be verified by applying the relations and conclusions 

obtained when considering properties 2 and 3 to relation (3), which in this 
case has the following form 

 
 

In conclusion, emphasized that entropy characterizes only the average 

uncertainty of choosing one element from a set, completely ignoring their 

content. 
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Figure 2. Entropy change in the case of two elements 

The concept of conditional entropy 

Now consider the case when two sets are given: Z=z
1
, z

2 ,..., zN and V=v
1
, 

v
2 ,..., vK, between whose elements there are relations. The product of sets 

ZV is called is the set whose elements represent all possible ordered pairs 

of products zivj, 𝑖 = 1,𝑁̅̅̅̅ ̅̅ , 𝑗 = 1,𝐾̅̅̅̅̅̅ . If each pair zi, vj is assigned a probability 

p( zi ,v j ), then have the product of ensembles ZV , p ( zv). The elements of 

the combined ensemble have the usual properties of probabilities: 

 
In particular, it follows from these properties that if a product of ensembles 

is given, then the original ensembles are Z, p( z) and V, p (v). The 

converse is possible only in the case, when the elements of the initial 
ensembles are independent, in which case 

 

Note that since in this case 

 

have 
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Similarly, formulas for combining any number of independent sources can 

be obtained.  
In the general case for dependent ensembles  

 

that is, to determine the probability of occurrence of an element of the 

combined ensemble, it is necessary to specify the conditional probability of 

occurrence of an element of one of the ensembles under the condition that 
the realizable element of the other ensemble: 

 

Let the joint ensemble ZV be given by the probability matrix of all its 

possible elements zivj, 𝑖 = 1,𝑁̅̅̅̅ ̅̅ , 𝑗 = 1,𝐾̅̅̅̅̅̅ : 

 
By summing up the row and column probabilities of (9) according to 

according to (8) can also define the ensembles Z, p( z) and V, p (v): 
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Since in the case of dependent elements 
 

 
 

using the first equality mentioned in (10) can write 

 
By the normalization condition  

  

for any 𝑖 = 1,𝑁̅̅̅̅ ̅̅ , so the first summand in the right-hand side is the entropy 

H(Z) of the ensemble Z, p( z). The second summand (by j) in the second 

summand characterizes the partial uncertainty attributable to one state of the 
ensemble V, provided that the state zi of the ensemble Z. It is called the 

private conditional entropy and is denoted by: 

 

The value HZ 
(V), obtained by averaging the partial conditional entropy over 

all elements zi 

 
is called total conditional entropy or simply conditional entropy. Thus, (11), 

taking into account (12), (13), can be written as  
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Using the second equality in (12), can write by analogy: 

 
It can also be shown that in the case of union of any number of sets {ZVW...} 

with dependent elements, the equality is satisfied 

 

Еemphasized that conditional entropy is always less than or equal to 

unconditional entropy: 

 
The fairness of inequality (16) is intuitive: the uncertainty of choosing an 
element from some set can decrease only if an element of another set is 

known, with elements of which there is a connection. elements of which 

there is a connection. elements of which there is a connection. From (14)-
(16), in particular, it follows that 

 
There is often another type of relationship, namely statistical dependence 
between elements of a sequence.  If a relationship exists only between two 

neighboring elements of a sequence, it is characterized by a conditional 

probability p (zi / zj). A sequence of elements possessing the above property 

is called a single-link Markov chain. The connection of each element with 

two previous elements is characterized by the conditional probability p (zi / 

zjzk), and the corresponding sequence is called a two-link Markov chain. 

For a single-connected Markov chain under the assumption that a known 
(accepted) element zj from the alphabet of volume N, partial conditional 

entropy 

 

At that, the total (average) conditional entropy is defined as 

 
Similarly, for a two-connected Markov chain 
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It is possible to construct expressions for entropy also at a more connection 
between the elements of the sequence. 

The concept of differential entropy  

Proceed to the consideration of information sources whose output signals are 

continuous random variables.  
The set of possible states of such a source is a continuum, and the probability 

of any particular value is 0, which makes it impossible to apply, for example, 

measure (3). Construct uncertainty measures for such sources on the basis of 
the previously introduced measures for discrete ensembles.  

The uncertainty of choosing any value of a continuous random variable 

according to formula (3) can be approximated by limiting the range of its 

permissible values and dividing this range, for example, into equal intervals, 
the probability of falling into each of which is different from zero and is 

determined as follows 

 

Here w( zi
* ) is the ordinate of the distribution density w( z)  of a continuous 

random variable at the value zi
* 
 belonging to the interval zi , zi + z 

Replacing in (3) w( zi)  by its approximate value w( zi
* )  have 

 

Then carry out the limit transition at z → 0. In this case, the sum becomes 

an integral, z → dz , and  

 

Considering that, in general, the range of variation of the continuous 
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(−;+), obtain 

 
It follows from formula (21) that the entropy of a continuous random variable 
is equal to infinity irrespective of the type of density The entropy of a 

continuous random variable is equal to infinity irrespective of the type of 

probability density. This fact, generally speaking, is not surprising, since the 
probability of a particular value of a continuous signal is 0, and the set of 

states is infinite. Obviously, it is not possible to use such a measure in 

practice.  
To obtain a finite characterization of the information property, it is possible 

to use only the first term, called differential entropy: 

 
The term differential entropy is related to the fact that for its definition in 

formula (22) the differential law of distribution is used p ( z ). A natural 

question arises: is not this convention artificial and meaningless.  

It turns out that differential entropy has the meaning of the average 

uncertainty of the choice of a random variable with an arbitrary law of 
distribution minus the uncertainty of a random variable uniformly distributed 

in a unit interval of the interval.  

Indeed, the entropy (2.2) of the random variable Zr uniformly distributed on 

the interval  is defined as 

 
If = 

 
Comparing (22) and (23) it is easy to see that at z = zr 

 

The concept of differential conditional entropy  

Now consider the situation when two (hereafter two) continuous random 

variables are statistically related. As before, divide ranges of admissible 

values of random variables into equal intervals so that 
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where w(  zi,
*
vj

* )  is the ordinate of the two-dimensional density distribution 

at the point (  zi,
*
vj

* ) belonging to the rectangle with sides z, v: 

 

Substituting approximate values of probabilities into the formula for entropy 
(3) obtain 

 

Due to the fact that 

 

first summand in of the right-hand side of the last equality can be represented 

as the sum of 

 

Further carrying out of the limiting transition at z → 0, v → 0 taking into 
account that according to the normalization condition 

 

get 
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The first and third summands are the entropy H(Z) of a continuous source 
(22), whose output signal is a random quantity Z, and the value 

 

is the conditional entropy of a continuous random variable. As one would 

expect, it is equal to infinity because of the second summand in the right-
hand side is equal to infinity.  Therefore, as in the case of a single 

independent source, only the first summand: 

 
The value (27) is called conditional differential entropy.  
Conditional differential entropy characterizes the average uncertainty of the 

choice of a continuous random variable with an arbitrary distribution law.  

At the same time, the results of realization of another, statistically related to 

it, continuous random variable are known, minus the average uncertainty of 
the choice of the random variable, having uniform distribution on the unit 

interval.  

The differential entropy of two continuous statistically related sources can 
be represented in the form of related sources can be represented as 

 
The second equality is obtained by the same scheme as in first one, at 

 

Note also that for continuous sources one can write equations for discrete 

messages H(ZV ) = H(Z) + HZ (V ) = H(V ) + HV (Z), but they have only 

theoretical value, since in practice it is impossible to work with infinite 

uncertainties. 

Properties of differential entropy  

Differential entropy, unlike the entropy of a discrete source, is a relative 

measure of uncertainty because its values depend on the scale of the 
continuous quantity.  

Suppose that the continuous random variable Z has changed by a factor of k. 

Subject to the normalization condition: 
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the following relation for the densities of the initial and scaled quantities 
takes place 

 
Taking into account (29) in accordance with (22) have 

 
It follows from (30) that due to the choice of different k differential entropy 

can take positive, negative and zero values.  

The differential entropy does not depend on the shift parameter = Const, 

h(Z + ) = h(Z ). Indeed, using the substitution V = Z + , at which the 

limits of integration do not change, and dz = dv have: 

 

Distributions with maximum differential entropy  

Formulate the following task.  
Determine the density p(z), providing the maximum value of the functional 

 

in limiting 
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The Lagrangian function in the above (isoperimetric) task has the form 

 
where , in this case a constant, indefinite multiplier Lagrangian. The 

necessary conditions of extremum (31) are given by the relation 

 
The desired density  

 

is obtained as a result of the joint solution of (31), (32). This means that if 

the only constraint for a random variable is region of possible values: Z  

,  , then the maximal differential entropy possesses a uniform distribution 

of probabilities in this region.  

Now remove the restriction on the region of possible values, but add a 

restriction on the variance value: 

 
When 

 
The Lagrangian function in this case takes the form 

 

and the corresponding Euler equation 

 
By direct substitution can verify that the Gaussian density 
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satisfies the necessary condition (36) of extremum (in this case maximum) 
of the functional (33) and the given isoperimetric constraints (34), (35). Note 

that in derivation, for simplicity, have taken the mathematical expectation 

equal to zero, since the differential entropy does not depend on the shift 

parameter anyway.  

Test questions on the topic 

1. Entropy and its properties.   

2. Conditional entropy and its properties.   

3. For which ensembles does the concept of conditional entropy make 
sense?  

4. What is the conditional entropy of an association of statistically 

independent sources?  

5. Conditional differential entropy and its properties. 
6. Quantity of information as a measure of removed uncertainty. 
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TOPIC 3 
QUANTITY OF INFORMATION 

The quantity of information in the transmission of one element of a 
discrete message  

Suppose that there is a discrete source of information characterized by a 

discrete probabilistic ensemble: 

 

where zi, 𝑖 = 1,𝑁̅̅̅̅ ̅̅ , ‒ its possible states. Each state of the source can be 

matched with a separate primary signal.  Some given set of primary signals, 

coming from the output of the information source to the input of the 

communication channel is called a message, and zi is called a message 
element.  

If the source states are realized independently of each other, then the partial 

a priori uncertainty of occurrence at the input of the channel message element 
zi is defined as 

 

Suppose that there is no statistical relationship between the interference and 

the message elements and the conditional probability is known that vj is 

received instead of zi: 

 

Thus, if an element vj is received at the output of the channel, the posterior 

probability p (zi  / v j )  becomes known.  

Consequently, can define the posterior partial uncertainty: 

 

The partial amount of information obtained as a result of the element vj 

becoming known is defined as the difference of a priori and posterior 
uncertainties: 



Theory of Information and Encoding 

34 

 
Thus, the private quantity of information is equal to the amount of 

uncertainty that is removed as a result of receiving the message element vj. 

Properties of the private quantity of information  

1. The private quantity of information decreases with increasing a priori 

probability p ( zi ), increases with increasing posterior probability p (zi / v j). 
Depending on the ratio between them can be positive, negative and zero. 

2. If p (zi / v j) = p ( zi ), then according to (37) I (zi ,vj) = 0. 

3. In the absence of interference, the private quantity of information is 

equal to the private a priori uncertainty of the element zi: 

 

since at this 

 

4. The partial amount of information about zi, contained in vj, is equal to 

the partial amount of information about vj contained in zi. Indeed: 

 

The average quantity of information in any element discrete 
message  

The a priori uncertainty in the average per element of the of the message is 

characterized by entropy: 
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and the posterior uncertainty is the conditional entropy: 

 
According to (38), (39) by analogy with the private quantity of information 

quantity on average per one element message is defined as 

 

In the last equality nothing will change if the first summand in the right-hand 
side is multiplied by 

 

Then, with given that 

 

and using the properties of the logarithm, the formula for the amount of 

information on average for one element of the message can be written as in 
the form of 

 
Further, unless the private nature of the quantity of information is 
specifically stated, the quantity of information on mean of one element of the 

message will always be implied (40). 

Properties of the average quantity of information in an element 
messages 

1. Non-negativity. I (Z ,V )  0 , so always H (Z )  HV (Z ) .  

2. I (Z ,V ) = 0 in the absence of a statistical relationship between Z and V, 

since in this case H (Z ) = HV (Z ) 

3. I (Z,V ) = I (V , Z ) , that is, the quantity of information in V with respect 
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to Z is equal to the quantity of information in Z with respect to V. Indeed 

 

4. If there is no interference I (Z,V ) = H (Z ) , since in this case HV (Z)=0.   

It's the maximum amount of information can be received from a source. 

Quantity of information when transmitting messages from a 
continuous source  

The ratio for the quantity of information from a continuous source is obtained 

from formula (40) for the discrete case.  
Denoting the transmitted and received continuous signals Z and V, 

respectively. Divide the region of admissible values of these signals into 

equal intervals and write down the approximate probabilities (Figure 3): 

 

where w(z
*
,v

* )  ‒ ordinate of the two-dimensional distribution density 

w(z,v)  at some point belonging to the rectangle with number i,j.    

 

Figure 3. Discretization of the area Z,V 

For corresponding to a given two-dimensional density w(z,v)   one-

dimensional densities w( z i), w(v j), by analogy with the way it was done at 

obtaining the relation for the differential entropy, can write   
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where w( zі
* ) , w(vj

* ) ‒   ordinates of one-dimensional densities for values zі
* 

and vj
*, taken in the intervals [zi, zi+z] and [vj, vj+v] respectively. 

Replacing w(zi,vj) , w(zi ), w(vj) by their approximate values w(zi
*
,vj

*) zv, 

w(zi
*) z, w(vj

*) v respectively, can write down 

 

Performing the limit transition in (41) at z → 0, v → 0 obtain: 

 
The formula (42) can also be obtained by using the notion of differential 

entropy. Indeed, by analogy with discrete case, define the quantity of 
information as the difference between a priori and a posteriori (in this case 

differential) entropy: 

 
In (43) nothing changes if the first summand in the right-hand side multiplied 

by 

 
Then, given that 

 
relation (43) can be rewritten in the following form: 
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Since I(Z,V ) in (44) is defined as the difference h(Z) − hv (Z), the quantity of 

information at transmission from a continuous source, unlike differential 

entropy, does not depend on the scale of the random variable. Note that the 
relationship between the concepts of entropy and quantity of information for 

a continuous source of information is similar to the relationship between 

potential, defined as the work of transferring a charge from infinity to a given 
point of a field, and voltage, defined as the potential difference, which is 

considered in physics. 

Test questions on the topic 

1. Describe the quantitative assessment of information.  

2. Explain the relationship between the Shannon and Hartley measures. 
3. Partial quantity of information and its properties. 

4. The quantity of information when transmitting messages from a 

continuous and discrete source. 
5. Determine the entropy of a message with the following probabilities of 

occurrence of symbols: p(z1) = p(z2) = p(z3) = p(z4) = 0.01, p(z5) = 

0.96. 
1. 6.Why does the quantity of information transmitted from a continuous 

source, unlike differential entropy, no longer depend on the scale of the 

random variable? 
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TOPIC 4 
DATA CHANNELS 

Discrete channel without memory.  

A discrete channel without memory is characterized by the following values: 

- input alphabet A,  

- output alphabet B,  

- conditional probabilities PY|X ( | x ) for all x  A 

 

From the presented expression can see that the probability of occurrence of 

the value yn on the output for a given input xn and the previous values of the 

output, yn,…, yn-1 depends only on the current value of the input xn.  Such a 
channel is called a memoryless channel because the output values do not 

depend on the previous values of the output. And depends only on the current 

input value. A discrete channel without memory and without feedback is 
described by the following probability 

 

Since there is no feedback, the input values xn are independent of the previous 

input values , xn,…, xn-1. 

Theorem.  

For a discrete channel without memory without feedback 

 

Proof:  

Set the joint probability P ( x1 ,..., xn, y1 ,..., yn). This probability can be written 

as 
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From the definition of a discrete channel with no memory and no feedback, 

the multipliers under the product sign can be written as 

 

This expression can be further simplified by splitting the product into two 

 

The first part of this expression is equal to P ( x1 ,..., xn). 

 

Dividing both parts of the expression by P ( x1 ,..., xn) and using the definition 

of conditional probability, obtain: 

 

The memoryless channel capacity is defined as the maximum of the average 

mutual information I (X,Y), which can be obtained by selecting P(x): 

 

 

This is the maximum of the mutual information between the input and output 

of the channel, given that the maximization is done over all possible 



Theory of Information and Encoding 

41 

distributions of the input Px. Fully equivalently, from the definition of the 

quantity of information, the capacity can be written as 

 

Uniformly dispersing channel  

Discrete channel without memory have K possible values at the input and J 

at the output. Call the channel uniformly dispersive (Figure 4) if the 
transition probabilities, ordered in in decreasing order are the same for each 

of K inputs. 

 

Figure 4. Uniformly dispersing channel 

Theorem.  

Regardless of the choice of the distribution Px for UDC 

 

where p1,p2,...,pj are the transition probabilities. 

Proof:  

From the definition of UDC, know that the conditional entropy of an output 

symbol Y for a given input X=ak is equal to 

 

From the definition of H (Y|X) it follows that 
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Since H (Y|X=ak) is constant regardless of ak due to the UDC, the expression 

takes the form 

 

Therefore 

 

Thus 

 

Uniformly focussing channel  

Consider a discrete channel without memory with K input values and J 
output values. Call this channel uniformly focussing (Figure 5) if the 

transition probabilities ordered in descending order are the same for each of 

the J outputs.  

 

Figure 5. Uniformly focussing channel 
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Theorem.  

In a uniformly focussing channel, uniform probabilities of input values lead 
to uniform distributions of probabilities of outputs. In this case 

 

Proof:  

Since the input distribution P(x) is uniformly distributed with K possible 

values, can write down following equality 

 

The summands P(y|x) correspond to the transition probabilities to each value 

of y from all possible inputs.  From the definition of a uniformly focussed 

channel, P(y|x) are constant for all values of y. Hence, the sum in the right-
hand side will be the same for all J values of y, and hence Y has a uniform 

distribution. Since its distribution is uniform, based on the entropy property, 

obtain: 

 

Strongly symmetrical channel  

A discrete memoryless channel that is both uniformly dispersing and 

uniformly focusing is called a strongly symmetric channel (Figure 6). A 

binary symmetric channel is a symmetric channel in in which the number of 

inputs and outputs is equal to two. 

 

Figure 6. Binary strongly symmetric channel 
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The capacity of a strongly symmetric channel is equal to 

 

From the definition of a uniformly focusing channel 

 

Combining these expressions, obtain the capacity of the strongly symmetric 

channel 

 

For a binary symmetric channel J=2 the capacity is equal to   

 

Symmetrical channel 

Features of the symmetrical channel (Figure 7):  

• All composite channels have the same input alphabet, the input 

values of each channel are selected from the same symbols;  

• All composite channels have different non-overlapping output 
alphabets;  

• X and Z are statistically independent, that is, the input symbol 

value does not affect the composite channel selection;  

• The probabilities of channel selection are q1,q2,...,qL. 

 

 

Figure 7. Symmetrical channel 
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Theorem:   

For a symmetric channel without memory satisfying the following 
requirements 

 

Proof:   

The joint entropy of Y and Z can be written as 

 

It is clear from the diagram that for a given Y, when the output value is 

selected, the value of Z is also known, therefore 

 

Then the uncertainty Y can be written as 

 

From the definition of conditional entropy, can write its as follows 

 

The latter expression follows from the fact that, given a chosen Z, the 

uncertainty of Y is related to the uncertainty of its choice in the corresponding 

channel. Similarly, can write the conditional entropy H(YZ\X) and similarly 
H(Z\XY) is zero, since for a known Y is exactly known Z. 

 

In addition, Z and X are statistically independent, so 

 

Expanding the notation H(Y\XZ), obtain 
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Now can define the quantity of information as 

 

Substituting the corresponding expressions for H(Y) and H(Y\X), obtain 

 

And, by the definition of the amount of information, the expression in 
brackets becomes 

 

Continuous Gaussian channel  

One of the most important continuous channels is the Gaussian channel. 

Consider the capacity of the Gaussian channel and prove the achievability of 
this capacity.   

The Gaussian channel is usually represented as a sum of a useful signal X 

and noise Z. It is assumed that the distributions of the signal and noise are 
independent. The capacity of a Gaussian channel with constraints on the 

input signal power P and noise variance N is given as 

 

where the maximum is reached when X ~ N(0,K). 

Proof:  

The capacity is given by the expression 

 

where maximization is performed over all possible distributions of the input 

signal p(x).  

From the definition of the quantity of information can write 
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* ‒ for a given X, the uncertainty of X+Z is equal to uncertainty of Z,  

** ‒ since X and Z are independent. 

As it is known, Z is normally distributed, and since the differential entropy 

Z ~ N(0,K) is calculated as 

 

And it's also known that 

 

The differential entropy Y with variance P+N is bounded from above by the 
differential entropy of a Gaussian random variable 

 

 

The maximum is reached at X ~ N(0,P) when Y is a Gaussian random variable 
and the equality is satisfied.  

The capacity of a Gaussian channel with constraint on the signal power and 

noise variance equal to 

 

bits for a single transmission is achievable. 
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Test questions on the topic 

1. What are the characteristics of data transmission channels? 

2. What channel is called continuous, discrete and discrete-continuous? 

3. What does the term " without memory" mean? 
4. Capacity for discrete data transmission channels.  

5. Capacity for continuous data channels.  

6. Gaussian channel capacity. 
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TOPIC 5 
SYMBOLIC CODES. PREFIX CODES 

Variable length coding. Prefix codes  

In this lecture will start a new topic on efficient source coding, also known 

as compression.   

In general, all of the codes discussed can be used in any number system with 
an integer greater than one. Since the most common number system is the 

number system with base two, binary codes will be considered.  

First discuss variable length codes that encode one source symbol at a time, 
instead of encoding strings of N source symbols. These codes are lossless. 

They guarantee error-free compression and recovery, but there is a chance 

that the encoded string is longer than the source string. The idea that enables 
compression, in general, is to assign shorter sequences of symbols to more 

likely outcomes and longer sequences to less likely outcomes.  

Consider three basic requirements for a useful code.  

• Firstly, any encoded string must be unambiguously decodable.  

• Secondly, the symbol code must be simple to decoding.  

• Thirdly, the code must provide the maximum possible as much 

compression as possible. 

Examples of symbol codes are shown in Table 2. 

Table 2: Examples of symbol codes 

Symbol Code 1 Code 2 Code 3 Code 4 Code 5 

а 00 00 0 1 0 

b 00 01 1 10 10 

с 01 10 11 100 110 

d 11 11 100 1000 111 

Any encoded string must be unambiguously decodable. 

A code is called unambiguously decodable if any finite sequence of the code 

corresponds to no more than one message. Codes 2, 4, 5 in the table are 

examples of unambiguously decodable code.  
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A symbolic code must be simple to decode.  

The most simple for decoding the code in which the end of the codeword can 
be detected at the same time with reception of the corresponding symbol.  

This can occur when no codeword is a prefix of another codeword.   

A binary sequence z is a prefix of another binary sequence z' if z is of length 

n and the first n symbols of z' are exactly constitute the sequence z.  

A symbolic code in which no codeword is a prefix for another codeword is 

called a prefix code. A prefix code is also known as "instantly decodable" or 

"self-separable" because the encoded string can be decoded from left to right 
without receiving subsequent codewords. The end of the codeword is 

detected immediately.  

Prefix codes are unambiguously decodable.  

Codes 2 and 5 given in the table are prefix codes.  

To decode a prefix code a binary tree is constructed (Figure 9). Below is an 

example of such tree for binary prefix code {011, 10, 11, 11} code {011, 10, 

11, 00} 

 

Figure 9. Binary tree for prefix code 

The code should provide as much compression as possible  

Medium length L(X) symbolic for ensemble X 
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Example.  

Let the set of symbols of the alphabet correspond to the probabilities and 
symbolic codes given in Table 4. 

Table 4. Symbolic code with probabilities 

Symbol Probabilities Code 

а 1/2 0 

b 1/4 10 

с 1/8 110 

d 1/8 111 

The entropy H (X) =1,75, and the expected length L(X) is also 1.75.  

The sequence acdbac is encoded as 0110111100100110.  

Find the encoding limit for uniquely decodable codes.  

First, consider the code {00, 01, 10, 11}.   

• Reduce the length of one codeword 00 → 0. Uniquely 

decodability can be restored only by increasing the lengths of other 
codewords.   

• Add a new codeword: 110.  Uniquely decodability can be 

restored only by increasing the length of one of the codewords 

Kraft's inequality  

A binary prefix code which contains codewords with lengths equal to 
l1,l2,...,lK (positive integers) exists if and only if 

 

Proof: There is 

 

Look at the number 
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The value of the sum in the degree exponent (li1 + li2+ ... + liN) is equal to the 

length of the encoded string x= ai1ai2aiN. For each string x of length N it 
contains one summand.  Introduce an array Al , which counts how many 

strings x are encoded with length l. Then  

        

 

Now assume that the code is uniquely decodable. Consider x with code 

length l. There are only 2l distinct bit strings of length l, so the inequality A 

 2l must be satisfied. Thus 

 

Hence, SN  Nlmax for all N. Now, if S is greater than 1, then as N increases, 

SN grows exponentially and for large enough N the exponent always exceeds 

a polynomial such that Nlmax.  But our result ( SN  Nlmax) must be true for 

any N. Hence, S 1.  

For binary code, Kraft's inequality is of the form 

 

Best achievable compression  

The expected length of a uniquely decodable code is limited from below by 

entropy H(X). 

Proof: Define the probabilities 

 

where  
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thus 

 

Using Gibbs inequality 

 

with equality only at qi = pi and Kraft's inequality: 

 

The inequality L(X) = H (X) holds if and only if Kraft's inequality becomes 
the equality z =1 and the lengths of codewords words satisfy 

 

Thus, it is impossible to compress information below entropy. How close can 

one get to entropy?  

Source coding theorem 

For an ensemble X, there exists a prefix code C with average length satisfying 
the inequality: 

 

Proof:  

Set the codeword lengths equal to integers slightly larger than the optimal 

lengths 

 

where [l*] denotes the smallest integer greater than or equal to l*. 
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Check that there exists a prefix code with such lengths, by checking Kraft's 

inequality. 

 

Then be confirmed 

 

Test questions on the topic 

1. Shannon's basic theorem for interference-free channel coding 

2. Typical classification of optimal coding methods 

3. Potential capabilities of continuous communication channels in 

transmission 

4. Theorem on coding in a continuous channel with interference. 

5. Fixed and variable length codes. 

6. The concept of optimal (effective) coding. 

 



Theory of Information and Encoding 

55 

TOPIC 6 
SHANNON-FANO CODING. HUFFMAN CODING. ARITHMETIC CODING 

Optimal Shannon coding  

In Shannon coding, symbols are arranged in order from most probable to 

least probable.  

They are assigned codes by taking the first li = log2 pi  digits from the binary 

decomposition of the cumulative probability. of the cumulative probability  

 

An example of coding is given in Table 5. Shannon coding provides H(X)+2.  

Table 5. Shannon coding 

ai p(ai) li 
Sum of pi to 

i-1 

Sum  

by p(ai) 

Final  

code 

a1 0,37 2 0,0 0,0000 00 

a2 0,18 3 0,37 0,0101 010 

a3 0,18 3 0,55 0,1000 100 

a4 0,12 4 0,73 0,1011 1011 

a5 0,09 4 0,85 0,1101 1101 

a6 0,06 4 0,94 0,1111 1111 

Shannon-Fano optimal coding  

The code is constructed as follows.  

1. The coded signs are written out in a table in descending order of 

their probabilities in messages.  

2. Then they are divided into two groups so that the values of 
probability sums in each group are close.  

3. All signs of one of the groups in the corresponding digit are 

coded, for example, by one, while the signs of the second group are coded 

by zero. 
4. Each group obtained in the process of division is subjected to the 

above described operation until, as a result of the next division, one sign 

remains in each group.  
An example of coding is given in Table 6. 
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Table 6: Shannon-Fano coding 

ai p(ai) Coding process 
Final  

code 

a1 0,37 
0 

0 00 

a2 0,18 1 01 

a3 0,18 

1 

0 10 

a4 0,12 

1 

0 110 

a5 0,09 
1 

0 1110 

a6 0,06 1 1111 

Huffman optimal coding  

1. Take the two least probable symbols in the alphabet.  These two symbols 
will get maximum length codewords differing by the last symbol.  

2. Combine the two symbols into one, repeat 1. 

3. The coded signs, as well as when using the Shannon-Fano method, are 

arranged in descending order of their probabilities (Table 7).  

4. Further, at each stage, the last two positions of the list are replaced by one 

and it is assigned a probability equal to the sum of probabilities of the 

replaced positions.   

5. The list is then re-sorted in descending order of probability, retaining 

information about which signs were combined at each step.   

6. The process continues until there remains a single position with 
probability equal to 1.  

7. A code tree is then constructed. A node with probability equal to 1 is 

assigned to the root of the tree. 

Table 7. Huffman coding 

ai p(ai) 
Building a tree  

probabilities 

Final  

code 

a1 0,37 0,37 0,37 0,37 0,63 1 0 

a2 0,18 0,18 0,27 0,36 0,37  111 

a3 0,18 0,18 0,18 0,27  110 

a4 0,12 0,15 0,18  100 

a5 0,09 0,12  1011 

a6 0,06  1010 
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8. Then to each node are assigned two descendants with probabilities that 

participated in the formation of the probability value of the processed node.   

9. This continues until the nodes corresponding to the probabilities of the 

original signs are reached. 

The coding process on the code tree is carried out as follows.  

1. one of the branches coming out of each node, for example, with a higher 
probability, is put in correspondence with the symbol 1, and with a lower - 

0.  

2. Descending from the root to the desired sign gives the code for that sign. 
The coding rule in the case of equal probabilities  

is specified.   

Table 7 and Figure 10 illustrate the application of the Huffman methodology. 

 

Figure 10. Binary tree of the Huffman code 

Block coding  

If the value of the average number of characters per sign is much higher than 

the entropy, it indicates redundancy of the code. This redundancy can be 

eliminated by switching to block coding. Consider a simple example of 
encoding two characters z1, z2 with probabilities of their occurrence in 

messages 0.1 and 0.9 respectively. 

If one of these characters is encoded, for example, by zero and the other by 
one (one character per character), have, respectively 



Theory of Information and Encoding 

58 

 

When switching to coding in blocks of two signs (Table 8) 

 

It can be verified that when encoding in blocks of three symbols, the average 

number of symbols per sign decreases and turns out to be about 0.53.  The 

effect is achieved due to the fact that when blocks are enlarged, groups can 

be divided into subgroups that are closer in terms of total probabilities. In 
this case 

 

where n is the number of symbols in the block. 

Table 8: Block coding 

Blocks Probabilities Codes 

z1 z1 0,81 1 

z1 z2 0,09 01 

z2 z1 0,09 001 

z2 z2 0,01 000 

Arithmetic coding  

Arithmetic coding is a lossless information compression algorithm that 

matches a real number from the interval [0; 1] to the text during encoding.  

This method, like the Huffman algorithm, is entropic ‒ the length of the code 

of a particular symbol depends on the frequency of occurrence of this symbol 

in the text.   

Arithmetic coding shows better compression results than the Huffman 
algorithm for data with non-uniform probability distributions of encoded 

symbols.  In addition, with arithmetic coding each character is encoded with 

a non-integer number of bits, which is more efficient than the Huffman code 
(theoretically, the character a with probability of occurrence p(a) is allowed 

to correspond to a code of length -log2 p (a), therefore, when encoding with 

the Huffman algorithm this is achieved only with probabilities equal to 
inverse powers of two).   



Theory of Information and Encoding 

59 

Encoding  

The input to the algorithm is the text to be encoded and a list of character 

occurrence frequencies (Table 9).  

1.  Consider the segment [0; 1] on a coordinate line.  

2.  Match each character of the text with a segment whose length is equal to 

the frequency of its occurrence.  

3.  Read a symbol from the input stream and consider the segment 
corresponding to this symbol. Divide this segment into parts proportional to 

the frequencies of occurrence of symbols.  

4.  Repeat (3) until the end of the input stream.  

5.  Choose any number from the resulting segment, which will be the result 

of arithmetic coding.   

Note: to optimize the code size, you can select the number from the range 

[left; right] obtained at the last step that contains the smallest number of 
characters in the binary record.   

Consider the string abacaba as an example (Table 10):   

Table 9. 

Symbol Frequency of occurrence 

а 0,571429 

b 0,285714 

с 0,142857 

Table 10. 

Counted 

symbol 

Left border 

segment 

Right border 

segment 

 0 1 

a 0 0,571429 

b 0,326531 0,489796 

a 0,326531 0,419825 

c 0,406497 0,419825 

a 0,406497 0,414113 

b 0,410849 0,413025 

a 0,410849 0,412093 
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Decoding  

An algorithm on a real number reconstructs the original text.  

1.  On the segment [0; 1], divided into parts whose lengths are equal to the 

probabilities of occurrence of symbols in the text, choose a sub segment 
containing the input real number.  The symbol corresponding to this sub 

segment is added to the answer.  

2.  Normalize the subtract and the real number.  

3.  Repeat steps 1-2 until get the answer. 

Test questions on the topic 

1. Necessary and sufficient conditions for matching the signal with the 

information transmission channel. 
2. What is the reason for the need to match the signal with the information 

transmission channel? 

3. What factors determine the information transmission rate and channel 

capacity? 
4. What is the essence of Shannon's theorem for a discrete channel without 

interference? 

5. Explain the method of constructing the Shannon-Fano code. 
6. Explain the method of constructing the Huffman code. 
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TOPIC 7 
OTHER EFFECTIVE CODES  

Elias codes  

Gamma code 

The Elias Gamma Code is a universal code for encoding for positive integers, 

developed by Peter Elias. It is usually used to encode integers whose 

maximum value whose maximum value cannot be determined in advance.  

The coding algorithm of Elias's gamma code is (Table 11):  

1.  Write the number in binary representation.  

2.  Add zeros before the binary representation, the number of zeros is one 
less than the number of bits of the binary representation.  

Algorithm for decoding Elias's gamma code  

1.  Count all zeros occurring before the first unit. Let N be the number of 
these zeros.  

2.  Taking into account the 1, which will be the first bit of the full whole 

number, with a value of 2N to count the remaining N digits of the whole 

number. 

Table 11. The coding algorithm of Elias's gamma code 

Number Binary 
view 

Number of 
bits 

Elias's  
gamma code 

1 1 1 1 

2 10 2 0 10 

3 11 2 0 11 

4 100 3 00 100 

5 101 3 00 101 

6 110 3 00 110 

7 111 3 00 111 

8 1000 4 000 1000 

9 1001 4 000 1001 

10 1010 4 000 1010 

11 1011 4 000 1011 

12 1100 4 000 1100 
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Delta code 

Elias's delta code is a modification of Elias's gamma code, in which the 

number of digits of the binary representation of a number is in turn also 

encoded by Elias's delta code. 

The coding algorithm of Elias's delta code is (Table 12): 

1. Count L the number of significant bits in the binary representation of the 

number N. 

2. Encode L using Elias's gamma code. 

3. Add to L on the right side the binary representation of the number N 

without a high unit.  

Algorithm for decoding Elias's delta code 

1. Count M - the number of zeros in the input stream to the first 1. 

2. Without including 1 count M bits. The counted number summed with 2M 

gives L. 

3. Next come L - 1 low bits of the number N. Count them and add 2L-1 to the 

counted number. 

Table 12. The coding algorithm of Elias's delta code 

Number 
Binary 

view 

Number of 

bits 

Elias's  

gamma code  

number of bits 

Elias's delta code 

1 1 1 1 1 

2 1 0 2 0 10 010 0 

3 1 1 2 0 10 010 1 

4 1 00 3 0 11 011 00 

5 1 01 3 0 11 011 01 

6 1 10 3 0 11 011 10 

7 1 11 3 0 11 011 11 

8 1 000 4 00 100 00100 001 

9 1 001 4 00 100 00100 010 

10 1 010 4 00 100 00100 011 

11 1 011 4 00 100 00100 100 

12 1 100 4 00 100 00100 101 
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Elias's omega code (recursive code) 

Like Elias's gamma and delta code, it assigns to the beginning of an integer 

the order of its value in the universal code. However, unlike the other two 

codes mentioned above, the omega code recursively encodes the prefix, 
which is why it is also known as the recursive Elias code. 

The coding algorithm of Elias' omega code is as follows (Table 13): 

1. Rewrite the group of zeros to the end of the representation. 

2. If the number to be encoded is a one, stop; if not, add the binary 

representation of the number as a group to the beginning of the 

representation. 

3. Repeat the previous step, with the number of digits(bits) just written, 

minus one, as the new number to be encoded. 

Table 13. The coding algorithm of Elias' omega code 

Number Elias's omega code Step 1 Step 2 Step 3 

1 0 0   

2 10 0 0 10 0  

3 11 0 0 11 0  

4 10 100 0 0 100 0 10 100 0 

5 10 101 0 0 101 0 10 101 0 

6 10 110 0 0 110 0 10 110 0 

7 10 111 0 0 111 0 10 111 0 

8 11 1000 0 0 1000 0 11 1000 0 

9 11 1001 0 0 1001 0 11 1001 0 

10 11 1010 0 0 1010 0 11 1010 0 

11 11 1011 0 0 1011 0 11 1011 0 

12 11 1100 0 0 1100 0 11 1100 0 

Algorithm for decoding Elias's omega code 

1. Start with the variable N set to the value 1. 

2. Read the first "group" following the remaining N digits, which will 

consist of either "0" or "1". If it consists of "0", it means that the value of the 

integer is 1; if it starts with "1", then N gets the value of the group, which is 
interpreted as a binary number. 

3. Read each successive group; it will consist of either "0" or "1" following 

the remaining N digits. If the group is "0", it means that the value of the 
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integer is N; if it starts with a "1", then N gets the value of the group, 

interpreted as a binary number. 

Dictionary codes 

LZW algorithm 

The Lempel-Ziv-Welch (LZW) algorithm is a general-purpose lossless data 
compression algorithm. 

The immediate predecessor of LZW is the LZ78 algorithm published by 

Abraham Lempel and Jacob Ziv in 1978. This algorithm was perceived as a 
mathematical abstraction until 1984 when Terry A. Welch published his 

work with a modified algorithm, later called LZW (Lempel-Ziv-Welch). 

Description 

The compression process is as follows.  

1. The characters of the input stream are read sequentially and a check is 

made whether such a string exists in the created string table.  

2. If such a string exists, the next character is read, and if the string does not 
exist, the code for the previous found string is put into the stream, the string 

is put into the table, and the search starts again. 

For example, if byte data (text) is compressed, there will be 256 rows in the 
table (from "0" to "255"). If a 10-bit code is used, then values between 256 

and 1023 remain as codes for the rows. New rows form the table sequentially 

- you can consider the index of the row as its code. 

The decoding algorithm needs only the coded text as input, since it can 

reconstruct the corresponding transformation table directly from the coded 

text. The algorithm generates unambiguously decodable code by adding a 

new string to the string table each time a new code is generated. LZW 
constantly checks if the string is already a known string and, if so, outputs 

the existing code without generating new code. Thus, each string will be 

stored in a single instance and will have its own unique number. Hence, 
during decryption, when a new code is received, a new string is generated 

and when an already known code is received, the string is retrieved from the 

dictionary. 
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Pseudocode of the algorithm 

1. Initialisation of the dictionary with all possible one-character phrases. 
Initialisation of the input phrase ω with the first character of the message. 

2. Read the next character K from the encoded message. 

3. If END_MESSAGE, output the code for ω, otherwise: 

4. If the phrase ω(K) is already in the dictionary, assign the value of ω(K) 
to the input phrase and proceed to Step 2, otherwise output the code for ω, 

add ω(K) to the dictionary, assign the value of K to the input phrase and 

proceed to Step 2. 

5. End. 

Encoding Example (Table 14). 

Suppose compress the sequence "abacabadabacababae". 

Step 1: Add "a" to the initially empty string and check if the string "a" is in 
the table. Since all single-character strings were entered into the table during 

initialisation, there is a string "a" in the table. 

Step 2: Next, read the next symbol "b" from the input stream and check if 
there is a row "ab" in the table. There is no such row in the table yet. 

Add "ab" to table <5>. To the stream: <0>; 

Step 3: "ba" is not present. In the table: <6> "ba". To stream: <1>;  

Step 4: "ac" - no. To table: <7> "ac". To stream: <0>;  

Step 5: "ca" - no. To table: <8> "ca". To stream: <2>; 

Step 6: "ab" is in the table; "aba" is not. To table: <9> "aba". To stream: <5>; 

Step 7: "ad" is not in the table. To table: <10> "ad". To stream: <0>; 

Step 8: "da" - no. To table: <11> "da". To stream: <3>; 

Step 9: "aba" is in the table; "abac" is not. To table: <12> "abac". To stream: 

<9>; 

Step 10: "ca" is in the table; "cab" is not. To table: <13> "cab". To stream: 

<8>; 

Step 11: "ba" is in the table; "bae" is not. To table: <14> "bae". To stream: 

<6>; 
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Step 12: And finally, the last line "e", followed by the end of the message, 

so just output <4> to the stream. 

Table 14. Example of sequence coding "abacabadabacababae" 

Current line Current 

symbol 

Next  

symbol 

Output Dictionary 

Code Bits 

ab a b 0 000 5: ab 

ba b a 1 001 6: ba 

ac a c 0 000 7: ac 

ca c a 2 010 8: ca 

ab a b - - - 

aba b a 5 101 9: aba 

ad a d 0 000 10: ad 

da d a 3 011 11: da 

ab a b - - - 

aba b a - - - 

abac a c 9 1001 12: abac 

ca c a - - - 

cab a b 8 1000 13: cab 

ba b a - - - 

bae a e 6 0110 14: bae 

e e - 4 0100 - 

So get the coded message "0 1 0 2 2 5 0 3 9 8 6 6 4", which is 11 bits shorter. 

Decoding 

The specialty of LZW is that for decompression, don't need to save the row 

table to a file for decompression. The algorithm is constructed in such a way 
that it is possible to reconstruct the table of strings using only the code 

stream. 

Now imagine that having received the encoded message described above, it 
is necessary to decode it (Table 15.). First of all, it is necessary to know the 

initial vocabulary, and subsequent vocabularies can be reconstructed as 

needed, since they are simply concatenations of the previous ones. 

+ No need to calculate probabilities of occurrence of symbols or codes. 

+ Decompression does not require saving the string table to a file for 

decompression. The algorithm is constructed in such a way that it is possible 

to reconstruct the row table using only the code stream. 
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+ This type of compression does not distort the original graphic file, and is 

suitable for compressing raster data of any type. 

- The algorithm does not analyse the input data, so it is not optimal. 

Table 15. Example of sequence decoding "abacabadabacababae" 

Data Output New entry 

Bits Code Full Partial 

000 0 a - 5: a? 

001 1 b 5: ab 6: b? 

000 0 a 6: ba 7: a? 

010 2 c 7: ac 8: c? 

101 5 ab 8: ca 9: ab? 

000 0 a 9: aba 10: a? 

011 3 d 10: ad 11: d? 

1001 9 aba 11: da 12: aba? 

1000 8 ca 12: abac 13: ca? 

0110 6 ba 13: cab 14: ba? 

0100 4 e 14: bae - 

Application 

The publication of the LZW algorithm made a great impression on all 

information compression specialists. This was followed by a large number 
of programs and applications with different variants of this method. 

This method allows to achieve one of the best compression ratios among 

other existing methods of compression of graphic data, with no loss or 
distortion in the original files. It is currently used in TIFF, PDF, GIF, 

PostScript and other files, as well as partially in many popular data 

compression programs (ZIP, ARJ, LHA). 

Test questions on the topic 

1. Dictionary methods of data compression.  
2. Statistical methods of data compression.  

3. Arithmetic methods of data compression.  

4. Elias's algorithm for encoding and decoding.  
5. Algorithm for encoding and decoding by the LZW method.  

6. Modern trends in the development of data compression. 
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TOPIC 8 
NOISE -RESISTANT CODING. HAMMING CODE 

Basic characteristics of noise-resistant coding 

Redundant encoding (redundant encoding) is a type of encoding that uses an 

excessive amount of information for the purpose of subsequent control of 

data integrity when recording/reproducing information or when transmitting 
it over communication lines. 

In the simplest case (constant length encoding) the encoding procedure 

consists in matching k information symbols corresponding to the symbol to 
be encoded, a block of n symbols. 

k ‒ the number of information bits, 

n ‒ the total number of digits in the noise-resistant code, 

(n – k) ‒ the number of check digits. 

In this case the code is denoted as (n, k) 

The corrective ability of the code is characterized by two values. 

r ‒ multiplicity of detectable errors. This is the number of digits, in case of 
simultaneous occurrence of errors in which only detection of the fact of an 

error is guaranteed, while detection of the exact digits in which these errors 

occurred is not guaranteed. 

s ‒ multiplicity of corrected errors. This is the number of digits, in case of 

simultaneous occurrence of errors in which not only detection of the fact of 

an error is guaranteed, but also determination of the exact digits in which 
these errors occurred. 

Codes in which automatic error correction is possible are called self-

correcting. At present the most interesting are binary block correcting codes. 

When using such codes, information is transmitted in the form of blocks of 
equal length and each block is encoded and decoded independently of each 

other. In almost all block codes symbols can be divided into information and 

verification. Thus, all combinations of codes are divided into allowed (for 
which the ratio of information and check characters is possible) and 

forbidden. 
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Repetition codes 

In this code, each transmitted character is repeated exactly n times. 

Accordingly, denotes this code (n,1). 

The correction abilities of the repetition code for different n are summarized 
in Table 16.  

Table 16. The correction abilities of the repetition code for different n 

n 2 3 4 

Source 

message 1 
11 111 1111 

Message with 

one error 
01 101 1101 

Output on 

message with 

one error 

Error is, 

digit unknown 

Error is, 

digit 2 

Error is, 

digit 2 

Message with 

two errors 
00 100 1100 

Output on 

message with 
two errors 

No error 
Error is, 
digit 3 

Double error,  
digit unknown 

Message with 
three errors 

- 000 1000 

Output on a message 

with 

three errors 

- No error 
Error is, 

digit 4 

Consider a number of requirements to the length of noise-resistant codes. 

Allowed combinations are code sequences that do not contain errors. In other 
words, these are sequences that can appear as a result of coding. 

An error vector is a binary sequence containing ones in error-prone bits and 

zeros in other bits. Accordingly, any distorted combination can be considered 
as the result of modulo 2 addition of the original allowed combination and 

the error vector. 

Obviously, the number of allowed code sequences (n,k) is equal to 2k. 

Consider the number of possible multiple errors. 
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Number of multiplicity errors: 

 

For any selected error vector a subgroup of 2k code sequences can be formed 
from those solved by adding to this vector (introducing this error). Suppose 

that the code (n,k) must correct errors of multiplicity up to s inclusive. Then 

the above-mentioned subgroups for all error vectors of multiplicity at most s 

must be non-intersecting for there to be a possibility of correcting these 
errors. 

The total number of subgroups is: 

1( allowed) + Cn
1 (multiplicity 1) + 

+Cn
2 (multiplicity 2) + ... + Cn

s (multiplicity s) 

Since the subgroups do not overlap and each has 2k combinations, their total 

number is: 

 

The maximum number of combinations that can be formed by the code (n,k) 
is 2n. 

 

After the transformations, obtain the lower Hamming bound of the noise-
resistant code length: 

 

Correlation of corrective power with coding distance 

The (Hamming) weight of a coding sequence is defined as the number of 

non-zero components of this sequence. It is clear that the coding distance 
between two sequences is equal to the weight of some third sequence, which 

is their sum, which (due to the property of the modulo-two addition 

operation) must also be a sequence of this code. Hence, the minimum code 
distance for a linear code is equal to the minimum weight of its non-zero 

vectors. 
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The code distance d is expressed as the number of symbols in which the 

sequences differ from each other. To determine the code distance between 
two combinations of a binary code, it is sufficient to add them mod 2, and 

count the number of units in the result.  

The minimum distance counted over all pairs of allowed code combinations 

is called the minimum code distance of the given code. 

Usually decoding is carried out in such a way that any accepted disallowed 

code combination is identified with the allowed combination located from it 

on the minimum code distance. If the minimum code distance of a given code 
d =1, (all code combinations are allowed), then the error cannot be detected. 

If d = 2, then a single error will be detected, etc.  

In general, if it is necessary to detect an error of multiplicity up to and 

including r, the minimum code distance must satisfy the following condition 

 

To correct errors of multiplicity s, each allowed code combination must be 

matched with a subset of disallowed combinations so that these subsets do 
not overlap. For this purpose, the inequality must be fulfilled 

 

To correct errors of multiplicity s and at the same time detect all errors of 

multiplicity r ( r  s ), the minimum coding (Hamming) distance must satisfy 

the inequality 

 

Give a geometrical interpretation of the above relations. 

Any n-bit binary code combination can be interpreted as a vertex of an n-

dimensional hypercube with edge length equal to 1. For example, at n = 2 it 

is a square, at n = 3 it is a unit cube. In general case n - dimensional hypercube 
contains 2n vertices that coincides with possible number of n -bit binary code 

combinations. 

The code distance can be interpreted as the smallest number of edges that 

must be traversed to get from one allowed combination to another. The 
subset of each allowed combination includes all vertices that are in the sphere 

of radius 
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If, as a result of noise action, the resolved combination moves to a point 

belonging to the sphere, it can be corrected. 

Hamming coding 

Hamming codes are self-checking codes ‒ codes that allow automatic 
detection of errors during data transmission. For their construction it is 

enough to assign to each word one additional (control) binary digit and 

choose the digit of this digit so that the total number of units in the image of 
any number was, for example, odd. A single error in any bit of the transmitted 

word (including, perhaps, the control bit) will change the parity of the total 

number of units. Modulo 2 counters, counting the number of units, which are 
contained among the binary digits of the number, can signal the presence of 

errors. 

There is no way to know in which digit the error occurred and, therefore, 

there is no possibility to correct it. Errors occurring simultaneously in two, 
four, and so on. - in an even number of digits. However, double, and even 

more so fourfold errors are considered unlikely. 

The construction of Hamming codes is based on the principle of checking the 
parity of the number of single symbols: an element is added to the sequence 

so that the number of single symbols in the resulting sequence is even. 

The following algorithm generates a code that corrects single errors for any 
number of bits. 

1. Number the digits starting from 1: 1, 2, 3, 4, 5, ..... 

2. Write the digit numbers in binary representation: 1, 10, 11, 100, 101, .... 

3. All digits that are powers of two are bits of parity: 1, 2, 4, 8, .... (1, 10, 
100, 1000) 

4. All other bits are data bits. 

Each data bit is included in a unique set of two or more parity bits according 
to the binary representation of its sequence number. 

Parity bit 1 covers all bit positions whose number contains a one in the low 

bit: 1, 3, 5, 7, 9, .... 
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The parity 2 bit covers all bit positions whose number contains one in the 

second bit: 2, 3, 6, 7, 10, .... 

The parity 4 bit covers all bit positions whose number contains one in the 

third bit: 4-7, 12-15, .... 

Parity bit 8 covers all bit positions whose number contains a one in the fourth 

bit: 8-15, 24-31, .... 

In general, each parity bit Р covers all bit positions for whose number the 

bitwise І with the number of that bit is not zero. 

This rule can be represented visually (Table 17): 

Table 17. Algorithm of Hamming code construction 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16  17 18 19 20  
 
 
… 

 Р1 Р2 І1 Р4 І2 І3 І4 Р8 І5 І6 І7 І8 І9 І10 І11 Р16  І12 І13 І14 І15 

Р1 1  1  1  1  1  1  1  1   1  1  

Р2  1 1   1 1   1 1   1 1    1 1  

Р4    1 1 1 1     1 1 1 1      1 

Р8        1 1 1 1 1 1 1 1       

Р16                1  1 1 1 1 

Only 20 encoded bits are shown (5 for parity Р, 15 for information І), but the 

pattern can be continued indefinitely. The key feature of the Hamming code, 

which can be seen from the example, is that each selected bit is part of a 
unique set of parity bits. All parity bits are checked for errors. An error 

pattern called syndrome shows the error bits. If all parity bits are correct, 

there is no error; otherwise, the sum of the positions of the erroneous parity 
bits will show the error bit. If exactly one parity bit is wrong ‒ the error is in 

it. 

As you can see, if there are m parity bits, they can cover from 1 to 2m-1 bits. 
If to subtract parity bits, 2m - m - 1 information bits remain. By changing m, 

get all possible Hamming codes. Hamming code fragment given in the 

Table 18 below. 

In the left part of the table one column is left empty, which will contain the 
results of calculations of control bits. Calculation of control bits is performed 

as follows. Take one of the rows of the transformation matrix and find its 

scalar product with the codeword.  In other words, the corresponding bits of 
both rows are multiplied and the sum of products is found. If the product is 
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greater than one, find the remainder of its division by 2. In other words, 

calculate how many times in the codeword and the corresponding row of the 
matrix in the same positions there are units, and take this number modulo 2. 

Table 18. Hamming code fragment 

Discharge 1 2 3 4 5 6 7  
 
 
… 

Title 
bit 

Р1 Р2 І1 Р4 І 2 І 3 І4 

Code 0 1 1 0 0 1 1 

Р1 0 1 0 1 0 1 0 1 

Р2 1 0 1 1 0 0 1 1 

Р4 0 0 0 0 1 1 1 1 

Hamming code with additional parity check (Single error correction, 
double error detection)  

Hamming codes have a minimum distance equal to three. This means that 
these codes can detect and correct a single error. Thus, such a code can detect 

double errors if it is not used for error correction. 

To correct this drawback, Hamming codes can be extended with an 
additional parity bit. In this way, the minimum coding distance can be 

increased to four, which can distinguish between single and double errors. In 

this way the decoder can detect and correct single errors and detect (but not 

correct) double errors. If such a code is not used for error correction, it can 
detect triple errors. 

Such extended Hamming codes are used in computer memory systems, 

where they are known as SECDED (an abbreviation of Single Error 
Correction, Double Error Detection). In particular, codes (72,64), (127,120) 

are used. 

Decoding algorithm 

The Hamming decoding algorithm is absolutely identical to the coding 
algorithm. The transformation matrix of the corresponding dimension is 

multiplied by the codeword column matrix and each element of the obtained 

column matrix is taken mod 2. The resulting matrix-column has been called 
"syndrome matrix". It is easy to check that the codeword generated according 

to the algorithm described in the previous section always gives a zero 

syndrome matrix. 
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The syndrome matrix becomes non-zero if, as a result of an error (for 

example, when transmitting the word over a communication line with noise), 
one of the bits of the source word has changed its value. Assume for example 

that in the codeword obtained in the previous section, the sixth bit has 

changed its value from zero to one (in the figure it is marked in red). Then 

obtain the following matrix of syndromes (Table 19). 

Table 19. Hamming code syndrome matrix 

Discharge 1 2 3 4 5 6 7  

 

 

… 

Title 

bit 

P1 P2 I1 P4 I2 I3 I4 

Code 0 1 0 0 0 1 1 

S1 1 1 0 1 0 1 0 1 

S2 1 0 1 1 0 0 1 1 

S4 0 0 0 0 1 1 1 1 

Test questions on the topic 

1. What is the essence of Shannon's theorem for a discrete channel with 

interference? 

2. Explain the nature of the dependence of the throughput of a continuous 
channel with interference on the channel capacity. 

3. What codes are called corrective? 

4. How is the distance between code combinations determined? 
5. What is meant by code distance? 

6. Highlight the methodology for constructing the Heming code? 
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TOPIC 9 
CYCLIC CODES 

Operations on polynomials 

It is convenient to describe cyclic codes using polynomials. For this purpose 

introduce a dummy variable x, the degrees of which correspond to the 

numbers of digits starting from 0. The digits 0 and 1 are taken as coefficients 
of polynomials ‒ introduce polynomials over the field GF (2).  

For example, the first line 1001011 is described by the polynomial 

 

The polynomial for each next line is formed by multiplying by x. In this case, 
if the leftmost symbol differs from zero, to realize the operation of moving 

the unit to the end of the combination, it is necessary to subtract (add mod 2) 

from the result polynomial xn + 1 . 

All combinations of the cyclic code can be constructed on the ring of 

polynomials by setting on the set of n -digit code combinations of two 

operations ‒ addition and multiplication.  

The polynomial addition operation in this case is realized as an addition of 
the corresponding coefficients mod 2. 

The multiplication operation is realized in the following sequence. The 

polynomials are multiplied as usual with the subsequent addition of the 
coefficients mod 2. If multiplication results in a polynomial of degree n or 

higher, then it is divided by the given polynomial of degree n, and the result 

of multiplication is the remainder of the division. It is clear that the higher 
degree of this remainder will not exceed the value n -1, and the obtained 

remainder will correspond to some n -digit code combination - closedness is 

provided. 

The division operation is the usual division of polynomials, only instead of 
subtraction the addition mod 2 is used. 
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To realize a cyclic shift using the multiplication operation described above, 

after multiplying by x, it is necessary to divide by the dipartite xn + 1. This 

operation is called taking the remainder or modulo conversion xn + 1, and 

the remainder itself is called the subtraction: 

 

It is easy to notice that in this case the remainder (deduction) is formed by 

adding modulo 2 the dipartite xn + 1 with the result of multiplication by x. 

The concept and general scheme of constructing a cyclic code 

A cyclic code is a code, each combination of which can be constructed as a 
linear combination of codes, each of which is obtained by cyclic shift of some 

base combination belonging to the same code. If the shift is performed from 

right to left, the leftmost character is moved to the end of the code 

combination. 

It is convenient to describe cyclic codes using polynomials. For this purpose, 

a dummy variable x, whose degrees correspond to the numbers of digits, 

starting from 0, is introduced. The digits 0 and 1 are taken as coefficients of 
polynomials ‒ polynomials over the field GF(2) are introduced into 

consideration.  

For example, the first line 1001011 is described by the polynomial 

 

Select a subset of all polynomials in the ring that are divisible by some 

polynomial g(x). Clearly, this subset will be an ideal, and the polynomial g(x) 

will be the generating or forming polynomial of the ideal. If g(x)=0, then the 
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whole ideal consists of one of these polynomials. If g(x)=1, then the ideal 

consists of all polynomials of the ring. 

In the ring 2n of all possible polynomials of degree n-1 over the field GF(2), 

the irreducible polynomial g(x) of degree m=n - k generates 2k elements of 

the ideal. Hence, a cyclic binary code can be defined as an ideal, each 

polynomial of which corresponds to an n -bit allowed code combination. 
Determine what requirements the generating polynomial of the ideal - g(x) - 

must satisfy. 

The generating polynomial must satisfy the following requirements: 

- p(x) must be non-zero; 

- the weight of p(x) must not be less than the minimum coding distance: 

v(p(x)) ≥ dmin; 

- p(x) must have maximum degree k (k is the number of redundant elements 
in the code); 

- p(x) must be a divisor of the polynomial (xn - 1). 

If g(x) satisfies this requirement, then the ring of polynomials can be 
decomposed into classes of ideal deductions.  

For clarity, the decomposition scheme is shown in Table 20. The first row in 

this table is the ideal itself together with the zero polynomial. As forming 
elements of the classes take (corresponding to the error vectors) polynomials 

r(x) that do not belonging to the ideal, and the classes of deductions on the 

ideal are formed by adding the elements of the ideal with the forming 

polynomials. 

If the above scheme of formation of deduction classes is implemented, and 

the polynomial g(x) of degree m = n - k is a divisor of the bipartite xn + 1, 

then each element of the ring is either divisible by g(x) without remainder 
(then it is an ideal element), or the remainder of the division r(x) appears - it 

is a polynomial of degree not higher than m -1. The elements of the ring 

giving the same remainder r(x) belong to the same class of deductions. 
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Table 20. The scheme of decomposition of polynomials into classes of 
deductions by the ideal 

0 r1 ( x) … rz ( x) 

g ( x) g ( x) + r1 ( x) … g ( x) + rz  ( x) 

xg ( x) xg ( x) + r1 ( x) … xg ( x) + rz ( x) 

( x + 1) g ( x) ( x +1) g ( x) + r1 ( x) … ( x +1) g ( x) + rz ( x) 
… … … … 

f ( x)  g ( x) f ( x)  g ( x) + r1 ( x) … f ( x)  g ( x) + rz ( x) 

The corrective power of the code is higher the more classes of deductions, 
residues r(x). The largest number of residues 2m -1 is given by an irreducible 

polynomial. As an example, Table 21 shows the irreducible polynomials up 

to the third degree inclusive. Tables including a large number of irreducible 

polynomials can be found, for example, in [1], [2]. 

Table 21. Table fragment of irreducible polynomials up to degree three 

M Code g ( x) 

1 11 x +1 

2 111 x2 + x + 1 

3 1011 x3 + x +1 

3 1101 x3 + x2 + 1 

Selection of forming polynomials for detection and correction of 
single errors 

Correction of single errors. Each single error in one of the n digits must 
correspond to its own class of deductions and its identifier ‒ the residue from 

division by the forming polynomial g(x). As mentioned above, the largest 

number of residues is given by an irreducible polynomial. If m = n - k degree 
of this polynomial, the number of non-zero residues will be 2n-k -1. Thus, to 

correct all n single errors it is necessary that the following inequality is 

satisfied 

 

Hence the degree of the forming polynomial 
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It has been shown above that the forming polynomial must be a divisor of 

the form xn + 1. On the other hand, it is known that any binomial of the 
form 

 

can always be represented as the product of all irreducible polynomials 

whose degrees are divisors of m from 1 to m inclusive. Consequently, for 

any n there exists at least one irreducible polynomial of degree m, which is 
a minor in the expansion of the bipartite xn + 1. This polynomial can be 

taken as a forming polynomial. 

Methods of formation of combinations and decoding of the cyclic 
code 

Construction of a non-systematic code.  

For the construction of n -bit allowed combination polynomial a(x), 

corresponding to the encoded sequence of information symbols, is multiplied 

by the forming polynomial: 

 

At decoding (possibly different from q(x) polynomial  corresponding to 

the accepted combination is divided by g(x). It is clear that in case of absence 

of errors the initial polynomial a(x) will be obtained at once. If the accepted 
combination contains an error, the division produces the remainder r(x) 

 

The remainder is used to determine the class of deductions and correct the 
error. 

The disadvantage of this coding method is that after error detection and 

correction it is necessary to divide by g (x) again in order to select 
information symbols. 

Constructing a systematic code. 

The polynomial corresponding to the original information parcel a(x), is 

multiplied by xm. The free lower digits are filled with the remainder from 
dividing the given expression by the forming polynomial: 
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The polynomial q(x) must be divisible by g(x) without remainder. Show that. 

When dividing a(x)xm by g(x) generally have 

 

where c(x) is an integer polynomial.  This equality (taking into account that 

the operations of subtraction and addition modulo two coincide) can be 

rewrite as 

 

or 

 

In this case, the information symbols always remain in the first k positions. 
Such a code is called a systematic code. In this coding method, the original 

code sequence occupying the first k positions immediately becomes known 

after error correction. 

Test questions on the topic 

1. What are the main properties of cyclic codes? 

2. What are the ways to construct cyclic codes? 

3. What is the method of decoding cyclic codes? 

4. What are the principles of choosing a generating polynomial? 

5. What condition is necessary to correct any single error? 

6. What operations are performed to detect and correct an erroneous bit? 



Theory of Information and Encoding 

82 

TOPIC 10 
ERROR PACKET CORRECTION. CYCLIC REDUNDANT CODE 

Error packet correction 

The codes previously considered were designed to correct random errors. In 

general, a code that corrects t errors can correct any error patterns of weight 

t or less in a code word-block of length n. However, there are channels in 
which errors occur in small intervals rather than completely randomly. For 

example, in storage media, errors arise due to physical changes, so are 

concentrated rather than randomly dispersed. Similarly, interference at short 
intervals causes packets of errors. There is a family of codes used to correct 

such multiple errors. Consider them in this lecture. 

Call an error packet of length t an error vector whose non-zero components 
are within t neighbouring digits. 

Call a cyclic error packet of length t an error vector whose non-zero 

components are within t neighbouring digits given at least one cyclic 

permutation of this vector. 

Examples: 

(01010110000) is a cyclic error packet of length 6,  

(00000010001) is a cyclic error packet of length 5,  

(01000000100101) is a cyclic error packet of length 5. 

An error packet of length t can be described in terms of a polynomial as 

follows 

 

where b(x) is a polynomial of degree t-1 describing the error pattern, and i 

indicates where the error starts. For the examples proposed above: 

 

 

Consider a linear code C. If all error packets of length t or less occur in 

different subsets, then each can be identified by its syndrome and all such 
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errors are correctable. Moreover, if C is a linear code capable of correcting 

all error packets of length t or less, then all such errors must occur in distinct 
subsets. 

Suppose that C can correct two such distinct errors e1 and e2 that lie in 

different subsets of ci. Then e1 ‒ e2 = c ‒ is a non-zero codeword. Suppose 

that e1 ‒ is the received vector. How can it be decoded? The codeword 0 can 
be converted to e1 by introducing error e1 or codeword c can be converted to 

e1 by error injection e2. Here a contradiction is reached, as this code is not 

capable of correcting error packets of length t or less. 

Error catching 

A cyclic code can correct all error packets of length t or less if and only if 

the syndromes of these errors are different. It is possible to decode packets 

with cyclic errors by error trapping. 

It is possible to prove that a (n, k) code correcting error packets of length t 

satisfies the constraint n − k  2t. Hence, n − k  t and n − t  k. Now an error 

packet of length t in a codeword of length n has a cyclic sequence of n − t 
zeros, which is a requirement for the error-catching algorithm to work. Here 
is a modification of the error capture algorithm that can be used for all error 

packets of length t or less in a cyclic code to correct error packets of  

length t. 

(1) Compute the syndrome. 

(2) Set i = 0 

(3) If si(x) is a non-cyclic error packet of length  t , then 

 

(4) Let I = I + 1. 

(5) If I = n, stop, the error pattern is undefined. 

(6) Compute si ( x) = xsi-1 ( x ). If si ( x)  n − k , si ( x) = si ( x) − g( x) 

(7) Return to step (3) 

Example 
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generates cyclic code to correct error packets of length 3 or less. Vector is 

received. 

 

Calculating syndromes (Table 22) 

Table 22. Syndrome table 

i Syndrome 

0 110011 

1 101001 

2 011101 

3 111010 

4 111011 

5 111001 

6 111101 

7 110101 

8 100101 

9 000101 

e( x) = 10100000 

Some suitable polynomials 

Constitutive polynomials satisfying the conditions of the theorem are hard to 

find, so give some examples of such codes for small t (Table 23). 

Table 23. Fragment of the table of forming polynomials 

g(x) (n, k) t 

1+ x2 + x3 + x4 (7, 3) 2 

1+ x2 + x4 + x5 (15, 10) 2 

1+ x4 + x5 + x6 (31, 25) 2 

1 + x3 + x4 + x5 + x6 (15, 9) 3 

1 + x + x2 + x3 + x6 (15, 9) 3 

Cyclic redundancy code 

Cyclic redundancy check (CRC) is a checksum algorithm for checking data 
integrity. CRC is a practical application of noise-resistant code based on 

certain mathematical properties of cyclic code. 
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The CRC algorithm is based on the properties of division with remainder of 

binary polynomials. The CRC value is essentially the remainder from 
dividing the polynomial corresponding to the input data by some fixed 

generating polynomial. 

Algorithm parameters 

One of the main parameters of the CRC is the generating polynomial. 

Another parameter associated with the generating polynomial is its degree, 

which determines the number of bits used to compute the CRC value. In 

practice, the most common are 8, 16- and 32-bit words, which is a 
consequence of the peculiarities of the architecture of modern computing 

technology. 

Another parameter is the initial (start) value of the word. These parameters 

completely define "traditional" algorithm of CRC calculation (Table 24). 
There are also modifications of the algorithm, for example, using reverse 

order of bit processing. 

Table 24. Algorithm parameters of the CRC 

CRC-1  0x1 

CRC-4-ITU  0x3 

CRC-5-EPC  0x09 

CRC-5-ITU  0x15 

CRC-5-USB  0x05 

CRC-6-CDMA2000-A  0x27 

CRC-6-CDMA2000-B  0x07 

CRC-6-DARC  0x19 

CRC-6-ITU  0x03 

Procedure description 

Realization of CRC on logic elements 

A string of n zeros is added to the original string. If the high bit in the string 

is "1", the word is shifted to the left by one digit, followed by the XOR 

operation with the generating polynomial. Correspondingly, if the high bit in 
the word is "0", the XOR operation is not executed after the shift. The residue 

obtained after passing through the whole string is the checksum. 

A checksum of n bits is added to the original string. If the above procedure 
shows 0 in the remainder, the string corresponds to the specified checksum. 
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Test questions on the topic 

1. Stages of building a group code.  

2. What are the advantages of cyclic codes?  

3. Properties of cyclic codes.  

4. What cyclic codes are widely used?  

5. Stages of building a cyclic code.  

6. Characteristics of methods of decoding cyclic codes. 
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TOPIC 11 
MATRIX CODES. ADAMAR CODES 

Matrix codes 

In coding theory, a matrix whose rows form the basis of a linear code is called 

a forming (generating) matrix. Code words in this case are all linear 

combinations of the rows of this matrix. 

If G is a generating matrix, the codewords of a noise-resistant code are 

formed by the following multiplication. 

w = sG , 

where s is any vector. 

The forming matrix for a (n, k) code contains k rows and n columns. 

The standard form of the forming matrix is: 

 

The forming matrix can be used to form a verification matrix (and vice 

versa): 

 

Binary codes are equivalent if the matrix of one code can be obtained from 
the other by the following transformations: 

− column permutation 

− row permutation 

− addition of one row with another 

Constructing a complement matrix 

The complement matrix contains all the information about the code 

construction scheme. 

There is a formal way of constructing the complement matrix based on the 

following requirement. Vector-string, resulting from summation of any l, 

(1l k) rows of the augmentation matrix must contain not less than dmin = l 

non-zero symbols where dmin ‒ minimum code distance. 
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In accordance with the above requirement, the complement matrix can be 

constructed by following the following rules: 

- the number of units in a row must be at least dmin-1; 

- the sum modulo two of any two rows must contain not less than dmin-2 units. 

If these requirements are met, the combination obtained by summation of 

any 2 rows of the forming matrix will contain not less than dmin non-zero 
symbols. 

The cyclic code is a group code, so it can be constructed using matrix 

representations as described above. However, in this case some additional 
possibilities related to the cyclic property also appear. Consider the ways of 

constructing the forming matrix of a cyclic code. 

Method 1: Forming polynomial be given in the form 

 

Then the forming matrix can be constructed by multiplying g(x) by the 

polynomial xk-1, k =n-m followed by a cyclic shift so that each i-th row of the 
forming matrix is composed of the coefficients of the polynomial 

 

Method 2. Consider polynomials Qi(x) corresponding to the code containing 

only one non-zero digit: 

 

The residuals are calculated for them 

 

Each i-th row of the forming matrix is formed by adding modulo two of these 
polynomials and their corresponding residues. In this case, the forming 
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matrix (in this case of the systematic code) is represented by two 

submatrices: 

 

where Ek ‒unit k  k - matrix, and rows of the matrix augmentation matrix 

Рk,n-k, are residues ri ( x ), i = 1, k. 

Adamar codes  

Consider the rule of formation of the Adamar matrix. 

 

To encode and decode the value of ‒1 of the Adamar matrix (denoted as 
" ‒ ") corresponds to the value of the code bit equal to 0, and the value of +1 

of the Adamar matrix (denoted as "1") ‒ code bit value equal to 1. 

Coding 

The Adamar code is designed to encode n symbols of the input sequence into 
2n output sequence. For this purpose, the corresponding row of the Adamar 

matrix is taken as the output sequence. 
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Decoding  

Multiply the Adamar matrix by the resulting sequence, obtaining the vector 

F.  

Define the coordinate a (the numbering starts from zero), which corresponds 

to the maximum modulo value of F.  

If Fa is negative, then the first coordinate of the initial message is equal to 1, 
if Fa is positive ‒ 0. The other coordinates are equal to the binary 

representation of a .  

Example 1 

Let the row be encoded 

 

After encoding, this row corresponds to the message 

 

Suppose that an error occurred during transmission, resulting in the reception 
of message 

 

Write the vector corresponding to this message in the notation of the of the 

Adamar matrix: 

 

After multiplying the Adamar matrix by the resulting vector, obtain the 
vector 
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The smallest value of the vector F corresponds to the coordinate a=6, at that 
Fa is positive, hence the initial message is formed as 

 

Example 2  

Let a row be encoded 

 

After coding get 

 

As a result of an error, a message is received 

 

Vector corresponding to the code  

 

The result of multiplication 

 

The smallest value of the vector F corresponds to the coordinate a=3, at that 

Fa is negative, hence the initial message is formed as 

 

Test questions on the topic 

1. Types of matrix codes. 

2. Description of the algorithm of coding by the Adamar code. 

3. Description of the algorithm of decoding by the Adamar code. 

4. Advantages of the Adamar code. 

5. Disadvantages of Adamar code. 
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TOPIC 12 
REED-MALLER CODES 

Reed-maller codes 

Reed-Maller codes are a family of linear noise-resistant codes (Table 25). 

Further it will be consider binary codes of length N as Boolean (binary) 

functions from N variables. 

Table 25. Reed-maller codes 

v1v2v3 000 001 010 011 100 101 110 111 

f1 0 1 1 0 1 1 0 0 

f2 1 0 1 0 1 0 0 1 

f1f2 0 0 1 0 1 0 0 0 

Define a set M of all possible uninomials: 

 

These functions are linearly independent, as is their vector representation. 

A binary Reed-Maller code R(m.r) of degree r and length 2m contains all 

linear combinations of vectors that are representations of uninomials of 

degree at most r from m variables. 

Аalgorithms for first-order codes  

There are also a number of efficient algorithms for first-order codes. 
Consider the code (1,3) (Table 26). 

Its matrix is simply all quadruples from 1000 to 1111 in their binary 

representation. 

Table 26. Reed-Muller R(1,3) 

v1v2v3 000 001 010 011 100 101 110 111 

1 1 1 1 1 1 1 1 1 

v1 0 0 0 0 1 1 1 1 

v2 0 0 1 1 0 0 1 1 

v3 0 1 0 1 0 1 0 1 
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These vectors can be taken as rows of the forming matrix. This is the (2,4)  

d = 4 code, which is also an extended Hamming code (with parity check) and 
is intended for single error correction and double error detection (Table 27). 

Table 27. Reed-Muller R(2,4) 

v1 v2 

v3 v4 

0 

0 

0 
0 

0 

0 

0 
1 

0 

0 

1 
0 

0 

0 

1 
1 

0 

1 

0 
0 

0 

1 

0 
1 

0 

1 

1 
0 

0 

1 

1 
1 

1 

0 

0 
0 

1 

0 

0 
1 

1 

0 

1 
0 

1 

0 

1 
1 

1 

1 

0 
0 

1 

1 

0 
1 

1 

1 

1 
0 

1 

1 

1 
1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

v1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

v2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

v3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

v4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

v1v2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

v1v3 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 

v1v4 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 

v2v3 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 

v2v4 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 

v3v4 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 

In the general case, the Reed-Muller code matrix R(m.r) contains k rows and 

2m columns 

 

The minimum code distance R(r,m) is 2m-r. 

Four large groups (partially overlapping) of Reed-Maller codes can be 

distinguished: 

R(0,m) ‒ repetition codes of length 2m, minimum coding distance N. 

R(1,m) ‒ noise-resistant codes of length 2m, minimum code distance d=N/2. 

R(m-1,m) ‒ single parity check codes of length 2m, minimum code distance 

d=2. 

R(0,m) ‒ extended Hamming codes of length 2m, minimum code distance 
d=4. 

The most interesting part of Reed-Maller codes is that for them there is an 

effective algorithm of decoding for any multiplicity of errors. 
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Write a vector of 7 input bits in the form 

 

and the vector of output bits 

 

Coding and decoding  

The coding operation in this case is multiplication 

 

The decoding operation is performed as follows. For the input vector r the 
input bits are estimated first of all of "higher" order. In this case it is 

 

Then bits are evaluated to an order of magnitude lower, and so on. The 

following algorithm is used for evaluation. 

 

Adding these bits together, get 

 

Similarly, by adding up the following bits, get: 

 

Thus, using the obtained sequence 

 

After all the "higher" order bits have been evaluated, the input vector is 

recalculated so as to ignore these bits: 

 

Then the same procedure is carried out for all bits up to the most least 
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Test questions on the topic 

1. Give the definition of a code. 

2. Description of the algorithm of encoding by the Reed-Maller code. 

3. Description of the algorithm of decoding by the Reed-Maller code. 

4. Advantages of the Reed-Muller code. 

5. Disadvantages of Reed-Maller code. 
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TOPIC 13 
CONVOLUTIONAL CODES. TRELLIS DIAGRAMS 

The concept of convolutional codes 

This lecture discusses an important widely used class of codes called 

convolutional codes. In particular, these codes are used by the 802.11 

standard and in satellite communications. 

Convolutional codes work with bits like all previously discussed codes, but, 

unlike block codes in systematic form, the sender does not send the message 

as a sequence of information bits interspersed with check bits. In 
convolutional codes, only the check bits are sent. 

The encoder uses a sliding window to compute r>1 check bits by combining 

different sets of bits within this window. The combination is a simple 
summation in F2 (sum mod two, exclusive OR), as in previous lectures. 

Unlike block codes, the window overlaps its previous position by shifting 1 

bit each time, as shown in the figure. The size of the window in bits is called 

the length of the coding constraint of a convolutional code. The larger this 
value, the greater the number of check bits that will be affected by each input 

symbol. Since only the check bits are transmitted over the channel, a larger 

code limit length corresponds to a greater corrective ability of the code. In 
return, the decoding process of codes with a large code-limit length slows 

down, which does not allow an unlimited increase of this length. 

If a convolutional produces r check bits per window and moves the window 
forward one bit per so, its ratio is 1/r. The larger the value of r, the higher 

the noise immunity of the code, but more bits are transmitted per clock and 

a larger channel width is used for transmission. In practice, r and the length 

of the code constraint restriction length is tried to be chosen as small as 
possible, providing sufficient noise immunity. Will denote the length of the 

coding constraint K.  

An example of a convolution code with two parity bits per message bit (r = 
2) and constraint length (shown in a rectangular window) K = 3 is shown in 

Figure 11. 
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Figure 11. An example of a convolutional code with two parity bits per 
message bit (r = 2) and constraint length (shown in the rectangular 

window) K = 3 

Encoding process 

The encoder processes K bits per clock cycle and produces r check bits 

according to a chosen function that processes different sets among these K 

bits. (Assume that each message contains K-1 zero bits at the beginning in 
order for the algorithm to function correctly.) One example is shown in the 

figure and corresponds to a scheme with K=3 and r=2. The encoder produces 

r bits, which are then sent, moves the window 1 to the right, and repeats the 

process. 

Encoding equations 

The example in the figure demonstrates one set of coding equations that 

defines how the check bits are generated based on the X information bits. In 
our case, the equations are as follows: 

p0[n]=x[n]+x[n-1]+x[n-2], 

p1[n]=x[n]+x[n-1]. 

Example of coding equations for a code with r=3 

p0[n]=x[n]+x[n-1]+x[n-2], 

p1[n]=x[n]+x[n-1], 

p2[n]=x[n]+ x[n-2]. 

In general, it can be seen that each coding equation is a combination of 
information bits and a forming polynomial g. In the first example, the 

coefficients of the forming polynomial are (1,1,1) and (1,1,0), and in the 

second (1,1,1), (1,1,0) and (1,0,1). 

Denote gi K-bit forming polynomial for the check bit pi. Write pi as 
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The form of the above equation is a convolution of g and x ‒ hence the term 

"convolution codes". The number of forming polynomials is equal to the 
number of generated check bits r for each sliding window. 

Example. 

Consider two forming polynomials 

g0 = (1,1,1), g1 = (1,1,0). 

In the transmitted message, X = [1,0,1,1,1,...] (assume x[n] = 0 Vn<0). Then 
the check bits will be as follows: 

p0[0]=(1+0+0)=1, p1[0]=(1+0)=1, 

p0[1]=(0+1+0)=1, p1[1]=(0+1)=1, 

p0[2]=(1+0+1)=0, p1[2]=(1+0)=1, 

p0[3]=(1+1+0)=0, p1[3]=(1+1)=0. 

And the final message transmitted through the channel looks like 

[1,1,1,1,1,1,0,1,0,0,0,...]. 

There are several forming polynomials, but the way they are formed is 
beyond the scope of this lecture. 

A few examples are given below. 

Table 28. Example of forming polynomials for r = 2 

Restriction length G1 G2 

3 110 1110 

4 1101 1110 

5 11010 11101 

6 110101 111011 

7 110101 110101 

8 110111 1110011 

9 110111 111001101 

10 110111001 1110011001 

Two ways of representing a convolutional coder 
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Block diagram 

The Figure 12 shows the same encoder as shown in the block diagram view. 

The input bits of the message x[n] come from the left, the "black box" 

calculates the values of the check bits based on the input bits and the 
"encoder state" (previous input bits). After all r output bits are generated, the 

encoder state is shifted by 1, x[n] takes the place of x[n-1], x[n-1] takes the 

place of x[n-2], and so on, and the last bit x[n-K+1] is reset. 

 

Figure 12. Block diagram of convolutional code 

Finite state machine 

The finite state machine (Figure 13) is identical for all codes of a given length 

K and the number of states is always 2K. Only the values of the output bits pi 
depend on the specific number and coefficients of the selected forming 

polynomials. 

 

Figure 13. Finite state machine of convolutional code 

A finite state machine is a way of specifying the encoding process. The 

encoder starts in the initial state and processes one bit per clock cycle. For 

each bit of the message, the encoder state changes (or stays the same) 
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according to the value of the input bit. At the same time, a certain set of bits 

is fed to the output. 

Decoding problem. 

The decoding problem is to find a sequence of input bits that best matches 

the received (possibly distorted) state. 

For definition of such sequence the decoder based on search of maximum 
likelihood is used. It is possible to show, that the best will be such sequence 

of input information bits to which corresponds the closest to the received on 

Hamming distance sequence of output bits. 

However, determination of such an input sequence is in general a non-trivial 

task. 

For example, the Table 30 shows the values of check bits for a convolutional 

code with k = 3 and r = 2. If the receiver has received 111011000110, it is 
obvious that an error has occurred during transmission, because this message 

does not correspond to any possible sequence. The last column shows the 

Hamming distance values for each of the possible transmitted sequences. 

Table 30. Example of forming polynomials for r = 2 

Input message Output message Received message Hamming distance 

0000 000000000000  

 

 
 

 

 

 

111011000110 

7 

0001 000000111110 8 

0010 000011111000 8 

0011 000011010110 4 

0100 001111100000 6 

0101 001111011110 5 

0110 001101001000 7 

0111 001100100110 6 

1000 111110000000 4 

1001 111110111110 5 

1010 111101111000 7 

1011 111101000110 2 

1100 110001100000 5 

1101 110001011110 4 

1110 110010011000 6 

1111 110010100110 3 
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It is obvious, that such way of decoding is inapplicable, as for a message of 

length N the number of possible variants becomes equal to 2N. For decoding 
of such code trellis-diagrams are used. 

Trellis-diagrams 

A trellis-diagram is a graph whose nodes are divided into groups representing 

time slices, and each node is connected with at least one node preceding it in 

time and one node following it in time (Figure 14). 

 

Figure 14. Trellis diagram of the convolutional code 

Viterbi's algorithm for convolutional codes is to minimize the path metric 
over all possible routes in a Trellis diagram. 

Initially, the starting state corresponds to the metric value equal to zero, the 

other states - to the infinitely large value (Figure 15). 

 

Figure 15. Initial state of the Trellis diagram 
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At each step the weight of an edge is calculated as the Hamming distance 

between the fragment of the decoded sequence and the output fragment of 
the corresponding transition in the finite state machine (Figure 16.). 

 

Figure 16. Calculation of the weight of edges of the Trellis diagram 

The values of the metrics for each vertex (state) in the next step are 
determined as a minimum of the sum of the weight of the edge entering that 

vertex and the value at the vertex from which that edge originates 

(Figure 17). 

 

Figure 17. Calculation of vertex values 

In this way the whole Trellis diagram is filled in. For the last column of 

states, a path is defined that provides the corresponding minimum path 
metric to each state (Figure 18). 
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Figure 18. Filling in the Trellis diagram 

 

The values of the input bits are determined for the smallest value of the path 

metric. If several states contain the minimum value of the metric, reliable 

decoding of the received message is not possible (Figure 19). 
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Figure 19: Determining the path for the minimum value of the metric 

Test questions on the topic 

1. Characteristics of tree codes.  

2. How to encode a sequence using the impulse response?  

3. Characteristics of coding with convolutional codes using a lattice 
diagram.  

4. What are the known algorithms for decoding convolutional codes?  

5. Characteristics of the coding algorithm using a trellis diagram.  
6. Characteristics of the Viterbi decoding algorithm. 
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TOPIC 14 
MODELS OF DETERMINISTIC SIGNALS 

Frequency representation of periodic signals  

Consider the representation of deterministic signals with using as basis 

functions 

 

 

Such a representation is called a Fourier transform. By virtue of Euler's 

formula 

 

Fourier transform makes it possible to represent a complex signal as a sum 

of harmonics. 

Suppose that the function u(t), describing the deterministic realisation of the 

signal on the interval t1, t2  satisfies the Dirichlet conditions (is continuous 

or has a finite number of breakpoints of the first kind, and also a finite 

number of a finite number of breakpoints of the first kind, as well as a finite 

number of extrema) and repeats with period T = t2 - t1, t (−, +). 

Using the above basis function  

 

the function u(t)can be represented as 

 

and the period 
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The coefficients A(jk1) in this spectral representation are called the complex 

spectrum of the periodic signal u(t), and the value A(jk1) for a particular k 

is called the complex amplitude.  

The complex spectrum is discrete, but by replacing k1 =  for it it is 

possible to construct an envelope 

 

Like any complex number, the complex spectrum can be represented:  

• in exponential form: 

 

where A(k1) is the amplitude spectrum and  (k1) is the phase spectrum 

(also discrete);  

• in algebraic form: 

 

where 

 

The (49) is obtained from (46) by substituting by the formula Euler's 
formula: 

 

It is clear that 

        

At k = 0, obtain the equality for the constant component of the signal: 
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By combining the complex-conjugate components in (45) one can obtain the 

Fourier series in trigonometric form: 

 

The spectra of amplitudes ‒ A(k1) and phases ‒  (k1)  can be represented 

by spectral diagrams as a set of lines, each of which corresponds to a certain 

frequency (one of the summands). Therefore, these spectra are called linear 

spectra. Signals, whose line spectra include harmonics of multiple 

frequencies, are called almost periodic. 

Frequency representation of non-periodic signals  

Suppose that the function corresponding to the real non-periodic signal 

function u(t) satisfies the conditions Dirichlet conditions and is absolutely 

integrable: 

 

Then the spectral representation of the non-periodic signal u(t) can be can be 

constructed by increasing the period of the periodic signal to infinity. For 
this purpose, proceed as follows. 

Substitute the expression (46) for the complex amplitude A(jk1) of the 

periodic signal into (45). Taking into account that T = 2 / 1 have 

 

Next, carry out the limit transition at T →. In this case the sum goes to the 

integral, 1 =  → d, k1 → As a result obtain: 
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Introducing in the last equality for the integral in square brackets notation 

S(j), write down a pair of Fourier transforms: 

 

The complex function S(j) is called the complex spectral density or spectral 

response. Also as in the case of a periodic signal, for a non-periodic signal 

the following representations of the spectral characteristic:  

a) The exponential form: 

 

where S () = S (j) is the spectral density of amplitudes, and  ( ) is the 

phase spectrum; 

b) algebraic form obtained from (54) by substituting 

 

 

where 

 

In this case 

 

Getting 
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The second integral of the odd function is equal to zero, and the first integral 

(due to the parity of the integrand) can be written only in due to the parity of 
the integrand) can be written only for positive frequencies.  Thus, obtain the 

trigonometric form of the Fourier series: 

 

that allows for a clear physical interpretation. 

Finally, consider another interesting property. For a function u(t) defined on 

the interval t1 , t2   can write 

 

Comparing the right parts of (47) and (60), it is easy to see that there is 

equality 

 

in other words, from the S ( j ) of a single pulse it is possible to construct a 

linear spectrum of their periodic sequence. 

Relationship between the duration of signals and the width of their 
spectra  

Suppose that a signal u(t) of a certain duration has a spectral characteristic  

S ( j ). Find the corresponding characteristic S  (j ) for the signal u (t ), 

the duration of which has been changed  times  
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where  = t 

From (61) it can be seen that the spectrum of the signal shortened 

(lengthened) in  times is  times wider (narrower). At the same time, the 

coefficient 1/ changes only the amplitudes of harmonics and does not affect 

the width of the spectrum.   

The specified property is connected with the fact that the variables t and  

are included in the exponent of the exponential function of the forward and 

inverse Fourier transform in the form of a product.  It follows that the 

duration of the signal and the width of its spectrum cannot be simultaneously 
limited to finite intervals.  In particular, the relation: 

 

where t is the pulse duration, f is the spectrum width. 

Test questions on the topic 

1. What are the characteristics of the spectrum of a periodic signal? 

2. How can the spectrum of a periodic signal be interpreted energetically? 

3. What is the Fourier transform? 

4. How can the spectrum of a non-periodic signal be obtained directly from 
the spectrum of the corresponding periodic signal? 

5. How can the spectrum of a non-periodic signal be determined 

energetically? 
6. How does the spectrum of a non-periodic signal differ from the 

spectrum of a periodic signal? 
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TOPIC 15 
RECONSTRUCTING A SIGNAL FROM ITS DISCRETE VALUES  

Formulation of discretization and reconstruction problems  

Signal discretization is the transformation of a function of a continuous 

argument into a function of discrete time.  It consists in replacing the 

continuous signal u(t) by a set of coordinates: 

 

where A is some operator. 

From the point of view of simplicity of implementation it is advisable to use 
linear operators.  In particular, to determine the coordinates of the signal it is 

convenient to use the ratio 

 

where 

 

‒ given basis (in particular, orthogonal) functions can be used.  

Discretization according to the ratio (63), due to the use of the integration 
operation, has high noise immunity.  

However, there is a delay of the signal for the integration time T. Therefore, 

more often the discretization is reduced to replacement the signal by a set of 
its instantaneous values (samples): 

 

This is achieved by using the delta function in (63): 

 

Representation of a continuous signal by a set of equidistant samples in the 

form of a lattice function: 
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‒ is the most common type of discretization. The function ug(t) is equal to 

u(kt) at points t = kt and zero at other points. If the step discretization step  

 

‒ the discretization is called uniform. The summation limits in (65) can be 

set finite, based on the conditions of physical realisability. 

Usually discretisation is carried out for the purpose of further conversion of 

the signal into digital form. As a result of digital coding of a discrete signal, 

its quantisation takes place ‒ replacement of instantaneous values of the 

signal with the nearest allowed ones at the appropriate moments of time. In 
this case the signal turns out to be discrete both in time and in a set of values. 

An important advantage of digital form of signal representation is that many 

quantisation levels can be represented by a small number of digits. Besides, 
at representation in digital form complex algorithms of processing on 

computer can be realised, including construction of codes detecting and 

correcting errors. 

When the discrete signal is subsequently used for control purposes, it is 

usually restored using some specified operator: 

 

If the discretisation was performed by an operator of the form (63) with using 

orthogonal functions  

 

for the reconstruction of the continuous signal can be used operator 

 

The following criteria are used to assess the quality of signal recovery The 

following criteria are used.  

Uniform approximation (criterion of the largest deviation): 

 

A uniform approximation for an ensemble of realisations: 
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The criterion of standard deviation (SD): 

 

SD for the ensemble of N realisations ‒  is calculated by averaging over 

the ensemble taking into account probabilities realisations 

 

 

Integral criterion: 

 

The value of the integral criterion  for N realisations is calculated by 

averaging over the ensemble: 

 

A probabilistic criterion is also used, defined as the following an acceptable 

level of probability Pдоп that the error will not exceed an acceptable value. 

permissible value доп: 

 

The use of one of these criteria in each case depends on the requirements of 
the system and the available resources.  

Kotelnikov's theorem  

As noted above, uniform discretization is the most widely used.  In this case, 

a model of the signal in the form of an ergodic random process, each 
realisation of which is a function with a limited spectrum, is used to select 
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the value of the sampling step. The theoretical basis of this approach is the 

following Kotelnikov theorem. 

Any function u(t), admitting a Fourier transform and having a continuous 

spectrum bounded by the frequency band from 0 to 

 

is completely determined by a discrete series of its instantaneous values 
counted at time intervals 

 

Proof.  Since by assumption the function u(t) has a bounded spectrum ‒ 

S(j) = 0 at   c, equality can be written 

 

The function S(j ) on a finite interval −c ,c  can be decomposed into a 

Fourier series.   

The pair of Fourier transforms is written by assuming S(j ) to be 

conditionally continuous with period 2c and formally replacing in (45), (46) 

t by , and 1 by t =π/c: 

 

Сompare relations (70) and (68), having previously rewritten equality (68) 

for discrete moments of time tk = kt: 
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Substituting the value of Ak from (72) into (69) can be written: 

 

In the last equality the minus sign in front of k can be changed to the minus 

sign in front of k can be reversed, because the summation is carried out on 

both positive and negative numbers: 

 

Now substitute S(j ) from (73) into (68): 

 

After integration in the right part of the last equality obtain 

 

So, have expressed the function u(t) through its discrete values taken at times 

tk = kt. Suppose t = nt, where n is some integer. Since t =π/c, for any 

integers k and n 

 

Hence 

 

This means that the values of the function u(t) at the moments of time k tk=kt 

are nothing but its samples. Thus, a function with a limited spectrum can be 

represented by the series (74), the coefficients of which are samples of the 

function values taken at time intervals 
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Based on this, the following scheme can be presented transmit-receive.  On 

the transmitting side, the instantaneous values of the signal u(t) are 

transmitted in intervals t, determined by the ratio (75). On the receiving 

side the sequence of pulses are passed through an ideal low-pass filter with 
a cut-off frequency fc.  Then at long transmission theoretically the signal at 

the output of the filter will accurately reproduce the transmitted continuous 

signal u(t).  

In reality, the real signal always has a finite duration, hence its spectrum is 

unlimited.  The error arises not only due to the forced limitation of the 

spectrum, but also due to the finite number of samples in the time interval T, 

which according to the theorem will be N = 2 fc T.  

The model of a signal with a limited spectrum has also a fundamental 

theoretical inconvenience. It cannot reflect the main property of a signal - the 

ability to carry information. The fact is that the behaviour of a function with 
a limited spectrum can be accurately predicted on the entire time axis if it is 

accurately known over any small time interval.  

Nevertheless, Kotelnikov's theorem has an important applied significance. In 

practice, the spectrum width fc is defined as the frequency interval outside 
of which the spectral density is less than some given value. Under this 

assumption, the function on the interval T is determined with some degree of 

accuracy (depending on the accuracy of the spectral density representation) 
by means of N= 2 fc T samples, the general meaning of Kotelnikov's theorem 

is preserved. 

Quantisation of signals  

A physically realisable continuous signal u(t) is always limited to some range 

umin , umax . In addition, a device can often reproduce only a finite set of 

fixed signal values from this range. In particular, a continuous scale of 

instantaneous values un = umax − umin may be divided into n identical intervals, 

and the allowed values of the signal are equidistant from each other, then it 

speaks about uniform quantisation.  If the constancy of the interval 
(quantisation step) is not observed, then quantisation is non-uniform.  

From the set of instantaneous values belonging to the i-th interval 

(quantisation step), only one value ui' is allowed (i-th quantisation level), and 
any other value is rounded to ui'. Suppose uniform quantisation with step  
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is performed such that the quantisation levels ui' are placed in the middle of 
each step. It is clear that in this case the error quantisation error is minimal 

and does not exceed 0,5. Define for this standard deviation (SD) of the 

quantisation error of quantisation error.  

In general case standard deviation of quantisation error i for i - step is 

determined by the ratio 

 

where w(u) is the probability density function of instantaneous values of the 

signal U. If quantisation steps are small in comparison with the range of 

signal variation range, the density of w(u) within each step can be be 

considered constant and equal, for example, w( ui' ). Then, introducing a new 

variable y=u(t)−ui', for the specified method of quantisation in accordance 

with (76) it has  

 

Given that p (ui')  0 and i 0 for all i = 1, n, according to (77) can be 

written the variance of quantisation error at the i-th step 

 

It turns out that it is equal to the value i
2/12, multiplied by the probability 

w(ui')i of the instantaneous signal value falling within the given interval.  

The variance of the total error is defined as the mathematical expectation of 

the variances i
2/12 at individual steps: 
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If the intervals are the same ‒ i =  for all i = 1, n, taking into account the 

normalisation condition 

 

get 

 

If the quantised signal is influenced by an interference, it can fall into the 
interval corresponding to another quantisation level. It is intuitively clear 

(and it can be strictly shown) that in the case when the interference ξ has a 

uniform distribution w(ξ) =1/a, where a/2 is the amplitude of the interference 

symmetric with respect to the instantaneous value of the signal, the 

probability of incorrect quantisation of the signal sharply increases at a. 

The impact of normally distributed interference with parameters (0, 2) is 

equivalent to the impact of uniformly distributed interference at a =3. 

Test questions on the topic 

1. Explain the processes of converting a continuous signal to digital? 
2. The essence of sampling a continuous signal. 

3. The essence of quantisation of a sampled signal. 

4. What is called the quantisation error and how is it determined for a 

uniform quantiser? 
5. What is called quantisation noise and how is it determined for a uniform 

quantiser? 

6. What is called signal compounding and what transformations does it 
consist of? 
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