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Methodology for Training a Neuro-Fuzzy Control System for a Diesel-Generator Unit
Under Variable Operating Conditions

This paper presents a methodology for constructing and training a neuro-fuzzy control system for a
diesel-generator unit operating under variable railway conditions. Modern traction power units
encounter significant fluctuations in operational factors such as train mass, track profile, and section
length, which necessitate adaptive regulation of power output. Traditional control systems are limited
in their ability to respond to complex multifactor dynamics, motivating the use of hybrid intelligent
systems. The proposed approach integrates Fuzzy C-Means (FCM) clustering to determine the initial
structure of the fuzzy rule base and to form Gaussian membership functions based on cluster centers. A
hybrid learning strategy is implemented, combining backpropagation and stochastic gradient descent
to adjust both the fuzzy and neural components of the model. This enables the system to refine
membership parameters, optimize rule interactions, and adapt to nonlinearities in the operational data.
The developed neuro-fuzzy model is validated using test samples not included in the training dataset.
The results demonstrate high approximation accuracy and strong generalization capability, with
prediction errors remaining within acceptable limits. The model effectively reproduces optimal control
actions across diverse operating scenarios. The proposed methodology is suitable for integration into
traction energy control systems and provides a foundation for future enhancements through expanded
datasets, improved optimization algorithms, and full-scale simulation or field testing.

Keywords: diesel-generator unit, intelligent control, neuro-fuzzy systems, machine learning,
autonomous rolling stock.

Introduction. The increasing complexity of modern railway transport systems places new demands
on the efficiency, reliability, and adaptability of traction power units. Diesel-generator installations,
which remain a key component of locomotive power systems on non-electrified or partially electrified
lines, are required to operate under highly variable conditions that can change drastically over short
distances. These variations arise primarily from fluctuations in train mass, differences in track profile,
and the length of operational sections, all of which directly influence the traction load and the dynamic
behavior of the power unit. Under such circumstances, maintaining stable generator operation, ensuring
fuel-efficient performance, and preventing overloads becomes a multifaceted control problem.

Traditional control approaches, often based on fixed-parameter regulators or simplified analytical
models, demonstrate limited effectiveness when exposed to the nonlinear and rapidly changing
dynamics of real railway operation. They lack the ability to interpret complex interactions between
multiple operational factors and cannot provide timely adaptation of control actions. As a result,
suboptimal power distribution, increased fuel consumption, and accelerated wear of engine components
are commonly observed, especially under demanding operational scenarios.
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In contrast, intelligent control systems — particularly those integrating fuzzy logic and neural-network
learning — offer significant advantages in handling the nonlinearities and uncertainties inherent in diesel-
generator operation. Fuzzy logic enables the incorporation of expert knowledge and heuristic rules,
while neural networks provide adaptability through data-driven learning. Combining these approaches
within a neuro-fuzzy framework makes it possible to construct controllers capable of real-time
adaptation, improved generalization, and robust performance under diverse conditions.

However, developing a high-performance neuro-fuzzy control system is a nontrivial task. It requires
the proper definition of the fuzzy knowledge base, the construction of membership functions that
accurately represent the operational domain, and effective training of the neural component.
Furthermore, due to the heterogeneity of the input parameters — train mass, track gradient and curvature,
and section length — additional challenges arise in harmonizing scales, preventing overfitting, and
ensuring adequate interpretability.

In this context, the application of Fuzzy C-Means (FCM) clustering provides a systematic approach
for deriving the initial fuzzy rule structure directly from operational data. When combined with hybrid
optimization techniques — such as backpropagation for consequent parameters and stochastic gradient
descent for membership-function tuning. This makes it possible to develop a controller that is both
adaptive and data-driven.

Modern diesel-generator units used in railway transport operate under conditions of high variability
in operational factors, such as changes in track profile, train mass, and section length. These conditions
necessitate dynamic adaptation of control actions to ensure stable operation of the power unit, reduce
fuel consumption, and enhance overall efficiency.

Traditional control systems are unable to respond promptly to complex variations in multifactor
loads, which limits their adaptability and effectiveness. To address this issue, it is reasonable to employ
neuro-fuzzy control systems that combine expert rules with machine-learning capabilities. However,
constructing an optimal model of such systems requires determining the structure of the fuzzy
knowledge base, designing membership functions, and training the neural component while accounting
for operating conditions.

Therefore, the study of methods for constructing and training a neuro-fuzzy control system for a
diesel-generator unit based on FCM clustering and combined optimization algorithms is of significant
relevance.

Analysis of recent research and problem statement. Recent scientific developments demonstrate
a growing interest in neuro-fuzzy systems and hybrid intelligent controllers for enhancing the
adaptability and efficiency of energy and transport systems. ANFIS-based models have been effectively
applied to railway power infrastructures, including prediction of reactive power at traction stations and
load control under variable operating conditions [1]. In diesel-engine applications, optimisation-
enhanced fuzzy PID controllers combined with UKF-based estimation improve speed stability and
disturbance rejection [2]. Advanced neuro-fuzzy network architectures, such as fuzzy recurrent
stochastic configuration networks, provide high-accuracy modelling with online adaptation for
nonlinear industrial processes [3, 4].

A significant body of research focuses on integrating ANFIS controllers into power-system
frequency regulation. Their effectiveness has been demonstrated in both classical LFC tasks and
renewable-integrated microgrids, particularly when combined with stabilising devices such as
STATCOMs [5 — 9]. In hybrid energy systems, ANFIS-based controllers are used for PV maximum
power point tracking [10], power-quality enhancement in P\VV-battery—diesel supply systems [11], and
energy-management strategies in AC and islanded microgrids [12, 13]. In wind-energy systems, hybrid
ANFIS-PI controllers considerably improve the dynamic performance of DFIG-based turbines [14].

Another direction of research addresses the construction of fuzzy rule bases and membership
functions using clustering-based methods. Techniques employing C-means or fuzzy C-means (FCM)
clustering help reveal natural structures in experimental data and reduce dependence on expert-defined
rules. Such approaches have demonstrated effectiveness in aerospace systems, robotics, and nonlinear
industrial control [15, 16, 17].
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In the railway domain, intelligent traction-control and decision-support systems increasingly
incorporate fuzzy logic and machine-learning techniques to interpret locomotive operating modes and
support driver decisions [18, 19]. Furthermore, studies on energy-recovery zones in DC traction
emphasise the significant influence of train mass and track profile on power flow, highlighting the need
for adaptive, data-driven control strategies [20]. Despite these advancements, most existing works
address global traction-system behaviour rather than the localised control of diesel-generator units under
rapidly changing operating conditions.

Several important challenges remain unresolved. Current neuro-fuzzy solutions rarely consider the
combined influence of train mass, track profile, and section length when forming control actions for
diesel-generator units. Many ANFIS-based systems still rely on static membership functions or heuristic
tuning methods that limit adaptability. Furthermore, only a few studies incorporate FCM-based
derivation of the fuzzy rule structure together with hybrid backpropagation—SGD training of both
antecedent and consequent parameters, although such integration is critical for modelling complex
nonlinearities in railway operations [8, 9, 15].

Thus, an important scientific gap persists: the need to develop a unified methodology for constructing
and training a neuro-fuzzy control system for diesel-generator units that integrates FCM-based structure
identification, normalisation of heterogeneous input parameters, and combined optimisation of neuro-
fuzzy parameters. Addressing this gap is essential for improving adaptability, fuel efficiency, and
dynamic stability of traction power systems operating under variable real-world railway conditions.

The purpose and tasks of the study. The purpose of this study is to develop a methodology for
constructing and training a neuro-fuzzy control system for a diesel-generator unit that accounts for train
mass, track profile, and section length.

The primary task is to determine the structure of the fuzzy system using FCM clustering, to design
membership functions based on the cluster centers, and to implement a hybrid-training algorithm for the
neural component that combines backpropagation with stochastic gradient descent.

Within the scope of the study, a universal rule base adapted to variable operating conditions is to be
developed and its effectiveness evaluated at the simulation stage.

Materials and methods of research. The development of the neuro-fuzzy control system for
the diesel-generator unit began with the construction of a representative training dataset, in which each
element was characterized by a triplet of input parameters: train mass M, track profile P, and section
length L. For every combination, the corresponding value of the optimal power-change coefficient Kopt
was recorded.

The input variables were normalized to the interval [0, 1] in accordance with the relation

X — X — Xhin , (1)
X — Xinin

which ensured uniform scaling of the parameters and contributed to the stable performance of the
clustering algorithm.

At the first stage, the structure of the fuzzy system was determined using FCM clustering. This
algorithm minimizes the functional

N C " 2
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where N is the number of training samples;

C is the number of clusters;

Vj is the center of the j-th cluster;

uij is the degree of membership of the i-th sample to the j-th cluster;
m is the fuzzification coefficient.
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The membership degrees were updated according to the formula
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whereas the cluster centers were computed using
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The clustering results determined both the number of rules in the fuzzy system and the shapes of the
membership functions of the input variables. Within the (M, P, L) space, a set of clusters was obtained
that forms regions of stable dynamics for the diesel-generator unit.
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1.04
O‘V
06- o JEt e
Ogl jo
L o O
‘e
0.0-
1.0
0.0
0.5 P
M 1.0 08

1.0
Fig. 1. Spatial distribution of clusters in the (M, P, L) coordinates

Based on the center Vj = (M, P;, Lj) of each cluster, membership functions for the fuzzy variables
were constructed. Gaussian membership functions of the form were used for the input parameters

p(x,c,c)z{——(x_c)zl, (5)

lon

where ¢ is the center of the function, determined by the coordinate of the corresponding cluster;
o is the width, approximated by the root mean square deviation of the set of points with the highest
membership degrees.

For each rule of the ANFIS system, a fuzzy antecedent of the form
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R;:if MeA, PeB, LeC,, then K, =f,(M,P,L) (6)

was constructed.
At the initial stage, the functions f; were assumed to be linear

fj(M,P,L):ajM +bjP+cJ.L+dj, @)

where the coefficients aj, b;, and c; were subject to subsequent training.
The constructed membership functions provided a smooth representation of the data distribution,
ensuring a gradual and stable response of the system to changes in operating conditions.
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Fig. 2. Gaussian membership functions for the variable “train mass”

The figure 2 illustrates the set of membership functions for the input variable train mass used in the
neuro-fuzzy control system of the diesel-generator unit. Each curve corresponds to a fuzzy term
describing a specific interval of mass values (e.g., very low, low, medium, elevated, high, very high).

The values along the horizontal axis are presented in the interval from 0 to 1, which corresponds to
the minimum and maximum possible mass values in the input dataset. Such normalization is necessary
to ensure the correct operation of both neural and fuzzy learning procedures.

The membership degree o represents how strongly the current mass value corresponds to a particular
fuzzy term. A value of =1 indicates full membership, whereas 6=0 denotes no membership.

The curves overlap so that, for any specific mass value, two or more membership functions are
activated simultaneously. This provides smooth transitions between operating modes, eliminates abrupt
changes in control actions, and enhances the adaptive power-adjustment capabilities of the diesel-
generator unit.

These functions have Gaussian or near-Gaussian shapes, allowing the system to respond gently to
changes in mass and improving the learning performance of the ANFIS-type structure.

Membership functions determine how the system perceives train mass not as a strict numerical value,
but as a linguistic variable. This enables adaptive adjustment of generator power depending on the train
weight, supports the formation of rules such as “if the mass is high, increase traction,” and allows mass
information to be integrated with other parameters such as track profile and railway-section length.

The construction of membership functions for the input parameters, including train mass, is a
fundamental stage in the development of the fuzzy control system, as it is at this level that numerical
values are transformed into linguistic terms subsequently used in the inference mechanism. The
membership functions shown in the figure represent the distribution of possible states of the train mass
variable within the normalized range and determine the degree to which each value belongs to a
corresponding fuzzy set. This ensures smooth system response to load variations and enables the
consideration of intermediate, imprecisely defined operating conditions.

However, an individual membership function represents only a single parameter and does not capture
the combined influence of multiple operational factors on the resulting control action. To construct a
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complete rule base, it is necessary to extend the analysis space and integrate several input variables
within a unified model. For this reason, the next step involved forming a multidimensional
representation in which the optimal control coefficient depends simultaneously on the track profile and
the train mass.

The three-dimensional plot illustrates the outcome of integrating the membership functions into the
inference structure and demonstrates how variations in two key operational parameters affect the optimal
control value. In this way, the system transitions from a one-dimensional fuzzy description of a single
variable to a generalized decision surface, which serves as the foundation for an adaptive and robust
neuro-fuzzy control system for the diesel-generator unit.

KOI)!
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Fig. 3. The dependence of the optimal control coefficient on track profile and railway section
length

The figure 3 presents a three-dimensional graphical representation of the dependence of the optimal
control coefficient Koy On two key operational parameters — track profile and railway section length.
The surface shown in the plot is the result of interpolating the discrete rule base of the neuro-fuzzy
system, which makes it possible to transform individual input values into a continuous functional
relationship.

The P axis represents the transition from downhill to uphill conditions. During downhill operation,
the diesel-generator unit requires a reduction in power output, which is reflected in lower values of Kgpt.
Conversely, during uphill operation, the demand for higher traction effort increases, leading to higher
values of the control coefficient. The L axis corresponds to the railway section length, whose influence
is integrative: as the length of the segment increases, the controller must compensate for cumulative
effects associated with motion resistance and thermal variations in the system.

The surface demonstrates a smooth increase in the control coefficient, from lower values on descents
to higher values on ascents and its further growth with increasing section length. This behavior reflects
the physical logic of the traction process: the greater the inertial and external forces acting on the rolling
stock, the more intensive the energy supply required from the diesel-generator unit.

The resulting surface is a key element in the formation of membership functions and the logical
structure of the neuro-fuzzy knowledge base. It provides the ability to implement adaptive control in
intermediate operating modes where the conditions are not strictly discrete. Thus, the figure illustrates
the generalized relationship governing the variation of the optimal control action depending on the
combination of track profile and route length, forming the foundation for designing an intelligent control
system for traction power units.

After constructing the fuzzy component, the training of the neural part was carried out using the
backpropagation method. The objective of the training process was to minimize the global error

E= i( Kopt,i - Kopt,i )2' (8)

i=1

N |-
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where K is the system response for the i-th sample.

opt,i
The partial derivatives of the error function with respect to the parameters of the membership
functions were computed according to

E Koy
a Zl< opt,i - opt i ) aC‘?t' ’ (9)
1= J
aE N K g
A_ Z( opt,i opt,i) 6(5pt] . (10)

The coefficients of the linear functions a;, b, ¢; were updated using the stochastic gradient descent
rule

-+ aE
ot — g0 _n E (11)

where 1 is the learning rate.

The combination of FCM-based structural initialization with neural-network training enabled the
development of a hybrid model capable of both generalizing the data and improving control accuracy.

The figure presents the structural model of a neural network designed for the automated
determination of fuzzy membership function parameters used in the neuro-fuzzy control system
of a diesel-generator unit. The depicted architecture represents a multilayer perceptron with
differentiable parameters, which ensures adaptive adjustment of the shape and position of
membership functions for each input factor, namely: train mass M, track profile P, and railway
section length L. This enables the modelling of complex nonlinear relationships between
operating conditions and the optimal control actions of the diesel-generator unit.

The first layer of the neural network consists of three inputs, each corresponding to a physical
variable. At this stage, the data are provided in a normalized form, which eliminates scale
differences between parameters and ensures stable learning. Each input is connected to all
neurons of the hidden layer, forming a fully connected structure and enabling the network to
process combinations of input factors comprehensively. In this way, the model incorporates the
mutual influence of operating parameters, which is critically important for simulating the
behavior of traction power systems.

The hidden layer functions as a spatial transformer of the input data, forming a
multidimensional representation in which clustering and subsequent identification of fuzzy sets
are performed with higher accuracy. The neurons of this layer use nonlinear activation
functions, which allow the model to approximate the nonlinear characteristics of diesel-
generator operation. Special attention is given to the part of the architecture enclosed in a dashed
frame, which represents the subsystem responsible for adjusting membership-function
parameters during training. This indicates a modular structure of the network in which the
parameters of membership functions constitute a trainable subsystem separate from the main
mechanism of generating control actions.
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Fig. 4. Simplified neural network architecture

The architecture provides the system with the capability to automatically determine the parameters
of fuzzy sets without relying on expert assessments. This aspect is particularly important in the context
of controlling diesel-generator units of autonomous rolling stock, where decision-making must account
for a wide range of operational states, including variations in train mass, track profile characteristics and
segment duration. The neural component enables the formation of a generalized model describing the
influence of these parameters and supports learning based on real or synthetic data obtained during
simulation or actual operation.

Thus, the presented scheme reflects the adaptation mechanism of the neuro-fuzzy system, in which
each parameter of a membership function is the result of an iterative optimisation process. This ensures
significantly higher accuracy in forming the rule base and allows the system to efficiently determine
optimal control actions for the diesel-generator unit under changing external conditions. Owing to such
an architecture, full integration of artificial intelligence methods is achieved in the development of
adaptive controllers for transport energy systems.

The training process of the neuro-fuzzy control system involves a staged procedure aimed at ensuring
the accurate adaptation of its parameters to a wide spectrum of operating conditions of the diesel-
generator unit. At the initial stage, a representative dataset is formed, incorporating input variables such
as the train mass, track profile characteristics, and section length, together with corresponding optimal
control actions derived from simulation models or empirical measurements. Prior to training, all input
variables undergo normalization, which minimizes scale-related distortions and improves the
convergence of the learning algorithms.

The system employs a hybrid learning mechanism that combines gradient-based optimization with
elements of error backpropagation. Within this framework, the neural component is responsible for
adjusting the parameters of membership functions (centers, widths, and slopes) while the fuzzy
component ensures the logical consistency of the rule base. During each training iteration, the model
evaluates the discrepancy between predicted and target control actions, computes a gradient vector, and
updates differentiable parameters to minimize the loss function. This iterative refinement allows the
system to capture nonlinear dependencies and interactions among the operational factors.

A significant aspect of the training process is the preservation of interpretability. Although the neural
network modifies numerical parameters, the linguistic structure of the fuzzy rules remains intact,
ensuring that the resulting control actions can still be interpreted within the framework of expert
knowledge. The optimization process continues until the model reaches a stable configuration in which
further improvements become marginal. As a result, the trained system is capable of generating adaptive
control signals for the diesel-generator unit, providing improved energy efficiency, stable dynamic
behavior, and robustness with respect to variations in load and track conditions.

During the training process, the parameters of the membership functions were adapted, which
ensured improved fuzzification for intermediate train mass values and complex track profiles. Particular
emphasis was placed on adjusting the widths of the Gaussian functions, as variations in oj directly
influenced the smoothness of the system’s response and the breadth of the fuzzy regions. To prevent
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overfitting, regularisation coefficients were applied, limiting abrupt parameter shifts and stabilising the
learning trajectory.

As a result of the training procedure, a continuous approximation surface was formed, providing a
coherent representation of the nonlinear dependence between the input variables and the optimal control
coefficient of the diesel-generator unit.

K =F(M,P,L). (12)

The practical implementation (fig. 5) of the developed intelligent neuro-fuzzy control system for the
diesel-generator unit required the creation of a hardware complex capable of ensuring stable operation
of the algorithms under real operating conditions of autonomous rolling stock. The figure shows an
experimental prototype of the hardware module, which integrates tools for data acquisition, signal
processing, and the generation of control actions. The structural design of the system is implemented in
the form of a protected metal enclosure with anti-vibration mounting, which ensures reliable operation
of the equipment in harsh transportation environments, including temperature variations, shock loads,
and electromagnetic interference.

20

Fig. 5. Practical Implementation of the Intelligent Control System for a Diesel-Generator Unit

The internal structure of the hardware complex is built according to a modular principle. Each
module performs a specific function - from preliminary signal filtering to the implementation of adaptive
neuro-fuzzy control algorithms. The photograph on the right shows the layout of the internal bus
compartment, which contains a series of standardized functional boards. These include analog-to-digital
conversion modules, communication units, logic processing controllers, and a high-speed computational
module responsible for executing machine-learning algorithms and fuzzy-logic operations.

The key element of the hardware complex is the computational module, which hosts the software
environment supporting neuro-fuzzy logic, optimization methods, and machine learning algorithms.
Unlike traditional controllers with fixed parameters, the proposed approach enables dynamic
reconfiguration of fuzzy-set parameters without the need for manual intervention. As a result, the system
can adapt to variations in train mass, track-profile changes, load conditions, and other operational factors
that influence the performance of the diesel-generator unit.

During implementation, special attention was given to ensuring the system’s reliability and fault
tolerance. Each functional module is equipped with redundant power channels and hardware diagnostic
mechanisms that provide autonomous fault detection and enable a safe-mode transition in the event of
critical deviations.

The resulting neuro-fuzzy model demonstrated the ability to reproduce the optimal operating modes
of the diesel-generator unit under various combinations of operational parameters. The validation of the
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model was performed by supplying control sets of input values M, P, and L that were not included in
the training dataset. The system provided an accurate estimation of the output variable with minimal
deviations, which confirms its generalisation capability.

To assess the effectiveness of the model, the prediction error was analysed

€= Kopt - Kopt’ (13)
and its average value did not exceed the established threshold of permissible deviations.

The conducted research resulted in the development of an integrated neuro-fuzzy control
model for a diesel-generator unit intended for autonomous rolling stock, demonstrating the
system’s capability to adapt to a wide spectrum of operational conditions. The proposed
architecture combines detailed physical modeling of the power plant with intelligent data-
driven mechanisms, enabling dynamic adjustment of control actions in response to variations
in train mass, track profile, and route length. Through the implementation of machine-learning-
based adaptation of membership-function parameters and the formation of a continuous rule
surface, the system achieved a high degree of flexibility and robustness, essential for traction
applications characterized by significant nonlinearities and rapidly changing load regimes.

Validation using test inputs not included in the training dataset confirmed the generalization
ability of the developed model. The predicted optimal control coefficients exhibited deviations
that remained within prescribed tolerance limits, indicating the reliability of the neuro-fuzzy
structure in reproducing realistic operating modes of the diesel-generator unit. Analysis of
prediction accuracy also revealed that the most challenging scenarios correspond to steep or
rapidly changing track profiles, where the system must compensate for abrupt transitions
between traction and regenerative modes. Nevertheless, even under such conditions, the
controller maintained stable performance due to the optimized configuration of Gaussian
membership functions and the use of regularization mechanisms during training.

Overall, the created model forms a foundation for further enhancement of intelligent
traction-power control systems. Prospective research directions include deepening the physical
detail of subsystems, integrating more advanced neural-network architectures, and extending
the optimization framework to multi-criteria formulations that simultaneously account for fuel
economy, emission reduction, and dynamic stability. The obtained results demonstrate that
hybrid neuro-fuzzy approaches offer substantial potential for improving the efficiency and
adaptability of autonomous rolling-stock energy systems.

Conclusions. This article presents a methodology for constructing and training a neuro-fuzzy control
system for a diesel-generator unit that provides adaptive power regulation depending on train mass, track
profile, and section length. The proposed approach combines the FCM clustering method for forming
the initial structure of the fuzzy system with a hybrid-training algorithm for the neural component based
on backpropagation and stochastic gradient descent. This integration made it possible to determine the
optimal number of rules, construct membership functions that reflect the patterns present in the input
data, and ensure parameter adjustment during the training process.

The results of the study have shown that the use of fuzzy clustering enables proper structuring of the
input space, while the combined training approach improves the accuracy of approximating the
relationship between operational parameters and the optimal control action. The resulting model
demonstrates the ability to generalize training data and reproduce the optimal operating modes of the
power unit across a wide range of operating conditions, confirming its suitability for use in control
systems of traction power installations.

Promising directions for further research include improving the algorithms for optimizing fuzzy set
parameters, expanding the set of input factors through real-time operational data, integrating the model
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into full-scale MATLAB/Simulink simulation systems, and conducting field experiments to validate the
performance of the neuro-fuzzy system under real railway operating conditions.
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Anopin 3anama*

!AcnipanT, Kadeapa TeXHIYHOTO 0OCIYrOBYBAHHS T4 PEMOHTY PYXOMOIO CKIaly, YKpaiHCHKUil IepiKaBHHil
VHIBEpCHUTET 3aJi3HMYHOTO TpaHCHopTy, Iwioma @eliepbaxa, 7, XapkiB, 61050, VYkpaima. ORCID:
https://orcid.org/0009-0003-0557-795X.

MeToanka HaBYaHHS HElPO-HEeYiTKOI CHCTEMH KePYBaHHS AU3€JIb-TeHEePaTOPHOI0
YCTAHOBKOIO B YMOBAaX 3MiHHUX eKCILIyaTaliifHMX YMOB

Anomauin. Y cmammi  npeocmasneHo - KOMNIEKCHY  MemMOOUKYy  po3poO/ieHHs.
IHMeNeKmyanbHOi Helpo-HeuimKoi cucmemu KepysanHs Ou3eib-2eHepamopHoI0 YCMAaHOBKOK0
ABMOHOMHO20 — pPYXOMO020  CcK1aody.  JlocniodxcenHs — cnpsamMoéaHe  HA — NIOBUUYEHHS
eHepeoepexmuenocmi, OUHAMIYHOI cmabitbHOCMI Ma A0AnMUEHOCMI poOOMU  CUN0BO20
azpezamy 6 ymMo8ax 3HAYHOI 6apiamueHOCmi eKCNaAyamayiiHux napamempia, 30Kpema Macu
noizoa, npo@ino Koaii ma 006iCuUHU OLIAHKU pPYXy. 3anpononosano nioxio, wjo NOEOHyE
Kracmepusayito oanux 3a memooom Fuzzy C-Means ons ¢popmysanns 6a3o6oi cmpykmypu
HeuimKoi cucmemu ma UKOPUCMAHHS KOMOTHOBAHO20 ANICOPUMMY MAUUHHO20 HABYAHHSL, KU
Micmumb 360pomHe NOWUPEHHA NOMUIKY [ cmoxacmuyHull 2padicumuuti cnyck. Lle 3a6e3neyye
ABMOMAMU308AHE HANAWMYBAHHS NAPAMEMPIE8 (YHKYIL HALEHCHOCMI Ma NI0GUULYE MOUHICMb
MOOeN08anHs HeNHIHUX 3anexcHocmeti. Y pobomi Hasedeno npoyec GhopmysanHs.
po3uupenoi Ouckpemnoi 6asu npasui ma no6y008u iHMepnoIbo8AHOL NOBEPXHI KEPYBATbHUX
Oill, AKa Y3a2aNbHIOE NOBEOIHKY CUCMeMU 8 YCbOMY pobouomy Oianasoui napamempis.
Ilpeocmasneno cmpykmypmy cxemy HeUpo-HeuimKko20 KOHMpo.iepa, pe3yibmamu HA8UanHs ma
OYiHI08AHHA MOOeli Ha KOHmpoabHux oauux. Iloxazano, wjo cucmema 30amHa KOpPeKmMHO
8IOMBOPIOGAMU  ONMUMANILHI  peXcumMu  pobomu  Ou3eib-2eHepamopHoi  YCMaHO8KU 3
MIHIMATbHUMU BIOXUTIEHHAMU Ma 30epieae 8UCOKI Y3a2albHIoWYi nacmugocmi. Pezynomamu
00CNIOMNHCEHHsL NIOMBEPONCYIOMb  eheKMUBHICMb NOEOHAHHA MemOoOIi8 HeYimKoi N02iKUu i
MAWUHHO20 HAGUAHHA O  peanizayii a0anmueHux pezyiamopié y MmMpancHOPMHUX
EHepeeMUYHUX CUCMEMAX Ma CMEOPIIMb NIOIPYHMA OJi1 NOOANbUUX PO3POOOK y cepi
IHMeNeKmyanbH020 KepyBaHHs a8MOHOMHUM PYXOMUM CKAAOOM.

Knwuogi cnosa: ousenv-zenepamopna yCmMaHo8Ka, iHMENEKMYAlbHe Kepy8aHHs, Heupo-HewimKi
cucmemu, MawuHHe HaGYAHHS, AGMOHOMHUL PYXOMUU CKIAO.
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