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Study of influence of imprecision of primary information on energy consumption of
rolling stock

The energy efficiency of urban rail transportation systems is a crucial indicator, as traction energy
consumption typically accounts for 40-60% of the total energy consumption of the transportation
system. This study examines the sensitivity of energy consumption to deviations from nominal conditions
under the implementation of pre-calculated optimized trajectories for electric rolling stock, considering
rolling stock with operation modes typical for suburban and urban transport. To determine globally
optimal control strategies that minimize energy consumption while complying with operational
constraints, the study uses dynamic programming based on Bellman's optimality principle. The
optimization model divides the track section into discrete segments and uses the backward induction
method to establish optimal control laws, producing speed trajectories as functions of the train's current
coordinates on a given gradient profile. The trade-off between energy and time is represented by an
indefinite Lagrange multiplier to ensure adherence to the timetable. Sensitivity analysis is performed by
simulating inaccuracies in the estimates of the train's current coordinates and variations in its passenger
load. Modelling of a targeted braking system has been implemented so as to ensure stopping accuracy
in the event of measurement inaccuracies. Modelling was performed using three typical gradient
profiles, characteristic primarily of underground railways; for comparison, modelling was also
performed on a conditional section with a negligible gradient. The research methodology allows for a
guantitative assessment of the degree of energy overconsumption that may be caused by deviations in
train passenger load factors and errors in the estimation of the position of rolling stock (£25 meters),
which provides information for assessing the effectiveness of pre-calculated optimized trajectories in
real operating conditions.

Keywords: speed trajectory optimization, urban rail transport, energy efficiency, dynamic
programming.

Introduction. The reduction of energy consumption for a given traffic schedule is one of the most
important priorities for urban rail transport systems. Electricity costs typically account for a significant
portion of transport companies' operating costs, with traction energy accounting for approximately 40-
60% of total energy consumption in such systems.

Speed trajectory optimization is one of the viable approaches for minimizing energy consumption
through determining the optimal control strategy that minimizes power requirements. It relies on a
systematic search for the most energy-efficient combinations of traction, coasting and braking phases,
while satisfying schedule and safety constraints [1].
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Dynamic programming, based on Bolman’s optimality principle [2], is one of the most effective
methods for optimizing speed trajectories due to its ability to guarantee convergence to a global
minimum (within the margin of error of discretization). This method evaluates all possible control
sequences by breaking down the optimizations problem into a series of sequential recursive decision-
making steps, ensuring that the solution represents a truly optimal policy rather than a local minimum
[3]. This mathematical basis provides a theoretical guarantee of optimality.

However, the dynamic programming approach requires a backward calculation of trajectories,
starting from the final conditions and moving towards the initial state, which complicates real-time
updates and requires preliminary calculations for each section of track under consideration [4]. In
general, optimal trajectories must be calculated in advance for specific operating scenarios and saved
for subsequent implementation by automated train control systems. Dependence on pre-calculated
solutions becomes particularly problematic when considering that optimal trajectories are significantly
affected by changes in train mass, since in modern metro rolling stock, passenger load can account for
up to 40% of the total mass of the consist. These changes in weight directly affect the dynamic
characteristics of the train and energy consumption.

The purpose and tasks of research. The main goal of this study is to quantitatively assess the
sensitivity of energy consumption when operating on optimized trajectories, but with deviations from
the calculated conditions. Although existing optimizations methods can generate globally optimal
control strategies for specific scenarios, real-world driving conditions always involve a certain degree
of uncertainty. The study aims to analyze the gap between theoretical optimizations and the practical
application of calculated trajectories.

The study covers several interrelated tasks. First, to develop an algorithm for optimizing the train's
trajectory under given route conditions, rolling stock characteristics and operational constraints. Second,
to develop a model of rolling stock dynamics that allows for deviations of train characteristics from the
calculated ones, while maintaining the optimized motion trajectory. Third, to conduct a systematic
sensitivity analysis on different track profiles representing different operational complexities and to
guantitatively assess energy overconsumption caused by load variations and spatial positioning errors
within £25 meters. Through this comprehensive approach, the study aims to provide a practical
understanding of the reliability of pre-calculated optimal trajectories and to provide insights for decision
makers on acceptable limits for operational tolerances that maintain energy efficiency benefits under
real-world operating conditions in urban rail transport.

Analysis of recent research and problem statement. Numerous publications are devoted to the
problem of electricity consumption in rail transport, particularly in the metro, and its optimization.
General systematic approaches and reviews of energy-efficient control methods are presented in [5-7].
The main ways to reduce electricity consumption are to optimize the movement trajectory and/or
optimize schedules. Research in this area covers the application of various mathematical methods, such
as: Pontryagin's maximum principle [8-12], dynamic programming [1, 3-4, 13-16], as well as
evolutionary, heuristic, intelligent and other optimization algorithms [17-22].

A separate group of works focuses on increasing the stability (robustness) of optimal trajectories to
the influence of unpredictable factors, such as uncertainty of passenger load or changes in external
conditions [26-27].

At the same time, despite significant achievements, the number of works devoted to the quantitative
study of the impact of individual factors on the electricity consumption of rolling stock, in particular in
the context of implementing pre-calculated optimal trajectories in conditions that deviate from the
calculated ones, has been limited.

Research materials and methods. Trajectory optimisation for any vehicle is the process of finding
the relationship between the vehicle's speed v and its coordinates s or time t that minimises (or
maximises) a specific target value. As a rule, the task of speed trajectory optimisation is to find a
trajectory v(s) or v(t) that would minimise the total energy consumption A for the movement of vehicle.
Formally, in general, the task of optimization of the speed trajectory can be represented as:
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mi)nj'A(v(t))dt: t<T, v(t)<v (1)

where A(v(t)) is the energy consumption depending on speed trajectory v(t), KWh;
v(t) — speed trajectory as function of time, m/s;
t—time, s;
T, — target time on route (scheduled), s;
Vmax — maximum speed limited by traffic requirements or design speed of rolling stock, m/s.
To solve the optimization problem using dynamic programming, the continuous state x is divided
into a discrete sequence. Let Ji(X) be the minimum ‘cost’ from step i to the end of the grid, for state x,
then the Bellman equation

Ji(x)zmjn{li(x,u)+Ji+l(fi(x,u))}, )

where |; is a cost of singular step and f; is a function of change of state given control sequence u.

In dynamic programming optimization, a transition table J(x) and optimal control sequence u(i) is
calculated sequentially, moving backwards from the grid end. Resulting control sequence corresponds
to a specific speed trajectory X(i).

In this study, to optimize train speed trajectory, a given section of track with a length of S m is split
into n separate independent segments, with train movement considered as a function of distance. The
segments act as optimization steps. Each segment has a corresponding value of the gradient i, %o. The
segment length s,, m, (discreteness of the division) is specified in advance before modelling and is
selected to be sufficiently small (5-10 m) to reduce its impact on the accuracy of calculations. If a
segment contains a gradient break, it is further divided into two smaller segments, thus fully preserving
the longitudinal profile of the section.

The model used to optimize the train's trajectory (Figure 1) can be is of a network type [28] with
feedback loops and consisting of two main structural components:

¢ the model of rolling stock dynamics (train movement model) that reflects the impact of control
signal u(n) on train movement, taking into account its load, traction characteristics and gradient
conditions;

o the actual control and optimization model responsible for selection of the control signal u(n) given
the outputs of train movement model.

The criterion of optimality is reaching the final destination without exceeding the scheduled travel
time for the route Ty, s, and with minimal total electricity consumption A, kWh.

The motion of a train is described by the basic equation of train motion

dv F-B-T g

dt P (1+y) )

where F is tractive effort, kN;
B — brake force, kN;
W — total resistance, kN;
P — train weight, kN;
g — gravitational constant (9,81 m/s?),
y — rotating mass inertial coefficient (=0,12).
The weight of a train consists of the weight of the rolling stock itself and the weight of passengers

P =P, +0.7355-k, -C, (4)
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where P+ is the weight of the rolling stock (tare), kN;
0.7355 is average weight of a single passenger, KN (75 kg);
k is a coefficient of passenger load, 0...1;

C is maximum passenger capacity of a given train.

[— V(n), u(n)

Train dynamics ¢
subsystem FV)

T

V(n+1)u(n)
A(n) i(n)
V(n)
—»  Trackprofile  —i(n)
Optimized
u(n) —» control law

Vmax,
Tt
- n

Fig. 1. Structural diagram of the train trajectory optimization model

The system of equations describing the operation of the train traction drive on the n-th track section
is as follows:

min[ F,...F(V)], 0O<u<i;
F,=10, u=0; (®)
B Uy, —1<u<0,

where F, is tractive effort at n-th route section, kN;

Fmax is maximum tractive effort of a motor car subject to current limitation or wheel-rail adhesion, kN;
Bmax is maximum braking force of a motor car subject to current limitation or wheel-rail adhesion, kN
(it was conditionally assumed that Bmax = —Fmax);

F(V) is traction characteristics of a motor car depending on speed; V is speed, km/h;

un is a control signal (we hereinafter also refer to it as traction application coefficient for clarity) at n-th
section.

For the purposes of this study, the traction characteristics and rolling stock parameters of the 81-
7036/7037 model metro consist manufactured by PJSC ‘Kryukiv Railway Car Building Works’ were
used for modelling. The 5-car consist is equipped with an asynchronous traction drive with a traction
motor power of 4x180 kW per car.

The electricity consumption for passing any section of the route A,, kWh, can be determined as
follows during modelling

NS
A =< 3600-m " (6)
0, F <0,

10
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where N, is total developed power of the train traction drive on the n-th section (N, = Fn-Vh);

n is total efficiency of the traction drive (for asynchronous drives n=10,8...0,9; 0,85 was assumed for
modelling), At, is time to pass the n-th section;

3600 is conversion factor from seconds to hours.

With dynamic programming for each section of the route n all possible transitions between discrete
states of the system are calculated. This means that for every possible section entry speed V, calculations
are performed sequentially for different values of the control signal u,, whereby u, € [-1, 1]. For each
combination (n, Vi, un) using equations 5 and 3 the resulting speed at the end of the section V', and
electricity consumption A, are determined. This also allows to determine the time it would take for a
train to pass a single section t, S:

tn:Vn—nanv (7)
+
36 36

where s; is a length of n-th route section, m;
3.6 — conversion factor from kilometres per hour to metres per second. Given the small size of the
sections, the acceleration value on them is assumed to be constant.

Complete calculation of all valid combinations (n, Vi, un) allows the use of the recursive Bellman
equation, which will include a similar equation for the next section n+1, i.e. the conditional cost value
of passing through all subsequent sections

3, (ViU )= min {A +2-t, + ., (V) (8)

—1<u,<1
whereby the cost function of a single section n for control signal un is
L (Vauly) = A +2t,, (9)

where 4 is indeterminate Lagrange multiplier and is determined iteratively.

After passing through all n sections in reverse order, a table of costs for all possible combinations is
generated Ju(Vn, Un) by selecting for each section n such a u, which corresponds to lowest cost function
value J, moving backwards from the end state. Thus, an optimal control law for given conditions u(s) is
established.

The target trajectory is calculated for an average case with a passenger load coefficient of ki = 50%.
In real conditions, the load coefficient is a volatile value that cannot be measured with high accuracy,
so it is important to analyze how its deviation from the calculated value affects energy consumption,
provided that the automated train operation system follows the calculated trajectory. Similarly, the
current position of the train cannot be measured with perfect accuracy, so there are always certain
deviations, which will also affect energy consumption on the route. The sources of error in determining
the train's coordinates require further study, and the law of its change as a function of the distance
travelled is unknown; therefore, for this study, it was assumed that the coordinate error is a constant
value throughout the entire route.

Deviations in train weight and its current coordinates are entered into the motion simulation as
follows. When performing traction calculations (acceleration and deceleration values), the ‘actual’ train
weight P’ calculated using equation 4 with arbitrary passenger load coefficient ks is used. The train’s
position s is substituted with fictitious position coordinate s’

s'=S+As, (10)

11
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where 4s is an error of determination of current train position, in meters.

To ensure accurate train stopping at stations with a small enough deviation of the stopping point from
the target point, but with a high (and therefore energy-efficient) average deceleration value, a precision
braking system has been introduced into the train movement simulation. A schematic diagram of this
system is shown in Figure 2.

D, D, D, D,

Y
A

L

Yy

pb

A

Fig. 2. Layout of the train precision braking system

The system consists of three sensors D1, D2 and Ds. D4 indicates the designated stopping point of the
train. The distance from the stopping point at which precision braking is applied is marked as Ly, and
was established as 300 meters. When passing the first sensor D; the current train coordinate calculated
by the onboard systems is reset and set equal to S — Ly, m, i.e. the full length of the route except for the
distance of targeted braking. On the segment between the first D; and second sensor D, a calibration of
train coordinate measurements by onboard systems is performed by comparing them with a known
distance L.. This reduces the dependence of the braking trajectory on measurement errors. At a short
distance from the stopping point Ls sensor D3 again resets the current train coordinate, accepting it as
equal to S — L. The target speed of the train in the precision braking zone is determined as

v(s):3.6-,/2-d-(8—s), (11)

where v(s) is target train speed at coordinate s, km/h;

3,6 is conversion factor from m/s to km/h;

d is a target deceleration value during braking, m/c? (was established as 0,6 m/s?);

S is the length of the segment, m; s is current train coordinate (distance from the starting point), m.

Modelling of such a system has shown that it is resistant to various forms of measurement errors
(errors in speed measurement by an axial sensor, deviations in values Ly, Lc, Lst from calculated) and
ensures that the train stops with acceptable deviations from the stopping point [29].

To model train movement, three conditional types of gradient profiles were used: 1 (‘light’), 11
(‘medium’) and III (‘heavy’) developed on the basis of previous research findings [30]. They are
presented in Tables 1-3. Additionally, for comparison purposes, calculations were also performed for a
gradient profile with a constant gradient of 3%o and a length of 1000 m (‘type 0’ gradient profile).

Table 1. Type I conditional gradient profile (‘light’)

Isegme”t 150 200 200 200 150 100
ength, m
Gradient, %o 3 10 -3 3 10 0
Table 2. Type II conditional gradient profile (‘medium”)
segment |, 5 50 150 50 100 250 400 50 100
length, m
Grag'e”t’ 5 30 | -30 3 3 3 11 17 0
00

12
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Table 3. Type 111 conditional gradient profile (‘heavy’)

Segment | 55 | 59 | 200 | 200 | 50 | 100 | 50 | 300 | 400 | 50 | 50 | 100
length, m
Graoiloent, 5 | 5 | 3 5 3 | 3 | 11| 4 | 30 | 17 | 5 0

Examples of optimised speed trajectories and speed trajectories with measurement errors are shown
in Figures 3-6. Solid lines correspond to calculated trajectories; dashed lines correspond to trajectories

with errors.
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Fig. 3. Example of train speed trajectories on a conditional gradient profile of type 0 [average
speed — 40 km/h; actual passenger load coefficient — 1.0; coordinate estimation error — +10 m]
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Fig. 6. Example of train speed trajectories on a conditional gradient profile of type III [‘heavy
profile; average speed — 30 km/h; actual passenger load coefficient — 0.8; coordinate estimation

Any of the introduced errors in modelling the train's movement along a pre-optimized trajectory leads
to an increase in the amount of electricity consumed to cover the route. Sensitivity analysis, in which
different error values are entered into the system, allows to determine the impact of each of them on
energy overconsumption. To perform the sensitivity analysis, a speed of 35 km/h was taken as the base
average speed for the route (typical for metro operation); energy overconsumption ea is calculated

relative to it as
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where Ay, A are energy expenditures to cover the route along an optimised trajectory, in the absence of
errors, in the forward and reverse directions, respectively;
A%, A'r are energy expenditures to cover the route in the presence of train weight deviations and errors
of measured coordinates, likewise in the forward and reverse directions.

Margins for calculation of energy overconsumption sa were established as follows: passenger load
coefficient ks from 0O to 1, train coordinate measurement error s’ — from -25 to +25 M. The simulation
summaries are presented in Tables 4-7 and Figures 7-10.

Table 4. Energy overconsumption &a for ‘type 0’ gradient profile

Passenger load
coeff. 0 0,25 0,5 0,75 1
Coordinate error, m

25 2,2% 2% 1,9% 2,4% 3,5%
20 1,9% 1,8% 1,6% 2,2% 3,5%
10 2,0% 1,8% 1,7% 2,2% 3,2%

0 0,5% 0,1% 0,0% 0,5% 2,0%
-10 2,2% 2,1% 2,1% 2,3% 3,4%
-20 2,3% 2,2% 2,2% 2,3% 3,7%
-25 2,8% 2,8% 2,8% 2,9% 4,3%

w

N
|

N
|

-
|

Energy overconsumption (&), %
o w
&
I
|
|

w
o

Coeftficient of passenger load (k;)

Coordinate measurement error (As), m
Fig. 7. Dependency of energy overconsumption a on error of measurement of train
coordinate and train weight deviations for ‘type 0’ gradient profile

Table 5. Energy overconsumption ga for type I (‘light’) gradient profile
Passenger load
coeff. 0 0,25 0,5 0,75 1
Coordinate error, m

25 5,9% 5,5% 5,4% 6,2% 8,0%
20 5,2% 4,8% 4,6% 5,5% 7,3%
10 3,3% 2,9% 2,6% 3,4% 5,3%

0 0,4% 0,1% 0,0% 0,9% 2,9%
-10 3,5% 3,3% 3,3% 3, 7% 5,7%
-20 4,7% 4,6% 4,6% 5,0% 6,8%
-25 5,6% 5,6% 5,6% 5,9% 7,6%

15



e-ISSN 2617-9059 Transport Systems and Technologies, 46, 2025

o N & o -] o
| | |

Energy overconsumption (g,), %
o

n
a

-10 5 25 "o
Coefficient of passenger load (k;)

Coordinate measurement error (As). m
Fig. 8. Dependency of energy overconsumption a on error of measurement of train
coordinate and train weight deviations for type I (‘light’) gradient profile

Table 6. Energy overconsumption ¢a for type II (‘medium) gradient profile
Passenger load
coeff. 0 0,25 0,5 0,75 1
Coordinate error, m

25 9,9% 10,1% 10,8% 13,7% 15,5%
20 8,3% 8,4% 9,2% 12,3% 14,2%
10 5,1% 5,2% 5,7% 9,7% 11,6%
0 0,2% 0,1% 0,0% 5,6% 8,2%
-10 3,7% 4,0% 4,4% 8,1% 10,4%
-20 5,7% 6,0% 6,6% 9,6% 11,6%
-25 6,8% 7,2% 7,8% 10,4% 12,4%

Table 7. Energy overconsumption &a for type III (‘heavy’) gradient profile

Passenger load
coeff. 0 0,25 0,5 0,75 1
Coordinate error, m

25 9,6% 13,1% 18,7% 32,0% 35,4%
20 7.3% 10,6% 15,4% 29,8% 33,6%
10 2,4% 5,1% 8,4% 24.5% 29,4%

0 -3,2% -0,7% 0,0% 18,6% 24,4%
-10 2,7% 4.7% 7,3% 22,4% 27,5%
-20 7,2% 9,4% 12,7% 26,0% 31,2%
-25 9,4% 11,5% 15,1% 28,1% 33,1%

16
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Conclusions. In this study, energy consumption was analyzed for train operation along a trajectory
optimized for specific conditions with varying degrees of input data reliability (based on train weight
and its actual location). The analysis was performed for four typical profiles, varying in length and

gradient.

Based on the analysis, the application of the rolling stock trajectory optimization model using
dynamic programming by the backward induction method is substantiated. This method allows to obtain
a globally optimized control law within the limits of system discreteness. The cost function of each

17
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trajectory option is determined based on the “energy-time” balance using an indefinite Lagrange
multiplier, which is refined iteratively using the bisection method.

It has been shown that the speed trajectory optimization model has to be supplemented with a
simulation of train dynamics, in which the automatic driving system maintains a given trajectory, with
the trajectory being defined as a function of the train coordinate V = f(s). The division of trajectories
into “optimized” and ‘actual’ allows for deviations of the “actual” parameters from those for which the
optimization was performed and allows for the assessment of the impact of deviations on energy
consumption, i.e., the sensitivity of energy consumption to deviations from the calculated conditions.

The studies conducted made it possible to assess the degree of influence of the reliability of input
information on the increase in electricity consumption and the nature of the influence depending on the
profile category. As a rule, energy overconsumption increases with the complexity of the route profile
(its length and gradients) — from 4% on the easiest profile to almost 40% on the “difficult” profile. On
easy profiles, the greatest impact on overruns is the position measurement error. On heavier profiles, on
the contrary, the greatest impact is exerted by the train's passenger load factor.
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Baoum JTnwenko®, Cepeii Auvko?

lAcmipanT Kadeapu eNEKTPOEHEPTETUKH, ENEKTPOTEXHIKH Ta €JIEKTPOMEXAHIKH, YKPAiHChKUH JepKaBHUMN
VHIBEpCHUTET 3alli3HUYHOTO TpaHcopTy, Maiiman OGoponnmii Bam, 7, Xapki, 61001, Vkpaima. ORCID:
https://orcid.org/0009-0005-1139-3537.

2KanuaT TEXHIYHAX HayK, JOLUEHT KaeIph €EKTPOECHEPTETUKH, ENEKTPOTEXHIKM Ta eNeKTPOMEXaHIKH,
YkpalHChKHI ep>KaBHUAN YHIBEPCHUTET 3aJII3HUIHOTO TpaHcmopTy, Maiinan O6oponnuii Bai, 7, Xapkis, 61001,
VYxpaina. ORCID: https://orcid.org/0000-0002-5977-8613.

Oninka BIVIMBY HETOYHOCTEH NePBUHHOI iHGOopMaLii HA eHeProCNoKNBAHHSA
PYXOMOI0 CKJIaay

Anomauia. Enepeoeexmusnicms cucmem MicbK020 3ANI3HUYHO20 MPAHCROPMY € KPUMUYHO
BANCTUBUM NOKAZHUKOM, OCKLIbKU CHOJNMCUBAHMS eHepeii na msey 3azeuyail cmanosumsv 40-60% 6io
302a1bHO20 eHEP2OCNONCUBAHHA MPAHCNOPMHOI cucmemu. Y ybomy 00cniodicenHi po3ansioacmuvcs
YYMAUBICMb €HEPeOCHONCUBAHHA 00 GIOXUNEHb 610 HOMIHANLHUX YMO8 NpU pedanizayii nonepeouso
PO3PAX06AHUX ONMUMIZ08AHUX MPAEKMOPIU PYXY e1eKmPOPyXoM0o20 CKIAJY, pO32AA0A0YU PYXOMULL
CKA0 3 pedcumamu pooomu, munogumu Oisi NPUMICLKUX MA MICbKUX nepeseseHb. [[isl 6U3HAUEHHS.
2N00ANbHO  ONMUMATLHUX CMPpAamezitl Kepy8auHsl, AKI MIHIMI3VIOMb CHOJNCUBAHHS eHepeli npu
OOMPUMAHHI ~ eKCRIYAMAayiiHux — 0OMedcenb, 6 OOCHIONCEHHI BUKOPUCTOBYEMbCA  OUHAMIUHE
NpoCpaAMYBaHH HA OCHOGI Npunyuny onmumanvrHocmi berimana. Onmumizayitina moodensb po30inic
OLNAHKY KO HA OUCKPEmHE cecMenmu i BUKOPUCTOBYE MEMO0 360POMHO20 NPOX0OY OJisl 6CMAHOBNIEHHS
ONMUMANLHUX 3AKOHI8 YNPAGNIHMSA, CHMEOPIOYU MPAEKMOPIi wWeuoKocmi AK QYHKYIT NOMOYHUX
KOOPOUHAM noi30a Ha 3a0aHux n030064CHIX npoginsx nepeconis. Komnpomic misic enepeicio ma wacom

19


https://doi.org/10.1016/j.jrtpm.2015.10.003
https://doi.org/10.1016/j.trb.2016.07.003
https://doi.org/10.1016/j.trb.2016.08.002
https://doi.org/10.1016/j.ejor.2018.06.034
https://doi.org/10.1109/TITS.2018.2873145
https://doi.org/10.1155/2016/8073523
https://doi.org/10.3390/app10217705
https://doi.org/10.1016/j.ejtl.2020.100013
https://doi.org/10.1109/TTE.2022.3194698
https://doi.org/10.18664/ikszt.v28i2.283285
https://doi.org/10.18664/1994-7852.211.2025.327149
https://orcid.org/0009-0005-1139-3537
https://orcid.org/0000-0002-5977-8613

e-ISSN 2617-9059 Transport Systems and Technologies, 46, 2025

npeocmasienull HegUIHAYEHUM MHONCHUKOM Jlacpanica 015 3a6e3neuerHss QOMmpUManis epapixoeozo
yacy pyxy no nepezony. Auaniz yymaueocmi 8UKOHYEMbCA ULIAXOM MOOENO8AHHA HemoYHOCmell 6
OYIHKAX NOMOYHUX KOOpOUHam noizoa ma eapiayili U020 NACANCUPCHLKO20 HABAHIMANCEHHS.
Mooentoganms cucmemu NPUYITLHO20 2ATbMYBAHHS OVII0 Peani3o8ano MaKum YUHOM, woo 3abe3neyumu
MOYHICMb  3YNUHKU Y  BUNAOKY HemouHocmi eumiproeanv. Mooentosanua npoeoounocs 3
BUKOPUCMAHHAM MPbOX MUNOBUX Npoinie nepezownis, XapakmepHux, 6 neputy uepzy, O
MemMpPONONIMeHis;, Oisi NOPIGHSHHS MOOEMIOBAHHA MAKONC NPOBOOUNOCS HA YMOSHIU OilsHYi 3
HE3HAYHUM NOCIUHUM YXUIoM. Memoouxa 00cniodcenHss 00360J5€ KiNbKICHO OYIHUMU CHYNiHb
nepesumpam euepeii, AKi MOXCymb Oymu CnpuyuHeHi GIOXUNEHHAMU 6 3a8aHMAMCeHHi noi30ie
nacaxicupamu ma noxXuoKamu 6 OYiHYi NOJOJNCEHHST PYyXomozo cknady (£25 mempis), wo Haoae
iHGhopmayito 0ns OYiHKU egheKMUBHOCMI NONEPeOHbO PO3PAXOBAHUX ONMUMIZ08AHUX MPAEKMOPIU 6
DeanbHux yMoeax eKCcniyamayii.

Knrwouosi cnosa. onmumizayis mpaekmopii  pyxy, MICbKuii 3aMI3HUYHUL  MPAHCNOpM,
eHepeoepexmueHicmy, OUHAMIUHE NPOSPAMYGAHHSL.

Jlama nepuioco naoxooacennss cmammi 0o sudanns 28.09.2025

Hama nputinamms 0o opyky cmammi 03.11.2025
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