

Ukrainian State University of Railway Transport  
Department of Management, Public Administration and HR Technologies

## **EXPLORING THE APPLICATION OF METAVERSE IN SUPPLY CHAIN MANAGEMENT EDUCATION**

Explanatory Report and Analytical Calculations  
to the Master's Qualification Thesis  
under the educational program "Sustainable Logistics and Supply Chain Management"  
specialty 073 "Management"

KPM 073. 12111570 П3

Prepared by the Master's Degree Student  
(second-cycle higher education)  
(self-performed work in full compliance  
with the principles of academic integrity)  
Group 210-SL-D24  
Ihor ROMANOVYCH

Supervisor: Senior Lecturer, Ph.D. in  
Economics  
Olena HULAY

Reviewer: Professor, Doctor of Economics  
Myroslava KORIN

2025

## ABSTRACT

This qualification work includes 14 presentation slides, 80 pages of explanatory notes (A4 format) containing 3 figures, 14 tables, 5 appendixes, and 77 referenced literary sources. Keywords: SUPPLY CHAIN MANAGEMENT, METAVERSE, SUSTAINABLE LOGISTICS, DIGITAL TWINS, EXPERIENTIAL LEARNING, VIRTUAL REALITY, EDUCATION 4.0, GREEN COMPETENCIES.

The object of the study is the process of professional training of supply chain management specialists.

The aim of this qualification work is to theoretically substantiate and develop a conceptual model for integrating metaverse technologies into supply chain management education to improve the effectiveness of professional training and the formation of environmentally oriented competencies in the context of Industry 4.0.

The thesis systematises the theoretical and methodological foundations of using immersive technologies and digital twins in logistics education, based on the adaptation of D. Kolb's experiential learning theory.

Based on an empirical study of students and experts, an analysis of global trends, the state of digitalisation in education has been assessed, and critical gaps in practical skills regarding "green" logistics and digital tools have been identified.

An "Eco-Immersive Experiential Learning Model" has been developed, which integrates multisensory feedback and environmental impact visualisation, along with a typology of virtual scenarios for modelling sustainable supply chains.

The results of this research may be used by higher education institutions to modernise SCM curricula, create virtual laboratories, and develop VR simulation tools to ensure the training of specialists capable of working in digital and sustainable logistics systems.

## АНОТАЦІЯ

Дана кваліфікаційна робота включає в себе 14 слайдів презентації, 80 аркушів пояснівальної записки формату А4, що містять 3 рисунки, 13 таблиць, 5 додатків та 77 використаних літературних джерел.

Ключові слова: УПРАВЛІННЯ ЛАНЦЮГАМИ ПОСТАЧАННЯ, МЕТАВСЕСВІТ, СТАЛА ЛОГІСТИКА, ЦИФРОВІ ДВІЙНИКИ, ЕКСПЕРИМЕНТАЛЬНЕ (ДОСВІДНЕ) НАВЧАННЯ, ВІРТУАЛЬНА РЕАЛЬНІСТЬ, ОСВІТА 4.0, ЗЕЛЕНІ КОМПЕТЕНТНОСТІ.

Об'єктом дослідження є процес професійної підготовки фахівців з управління ланцюгами поставок.

Метою кваліфікаційної роботи є теоретичне обґрунтування та розроблення концептуальної моделі інтеграції технологій метавсесвіту в освіті з управління ланцюгами поставок для підвищення ефективності професійної підготовки в умовах Індустрії 4.0.

У роботі систематизовано теоретико-методологічні засади використання імерсивних технологій та цифрових двійників у логістичній освіті на основі адаптації теорії емпіричного навчання Д. Колба.

На основі емпіричного дослідження студентів та експертів, аналізу глобальних трендів здійснено оцінювання стану цифровізації освіти та виявлено критичні розриви у практичних навичках щодо «зеленої» логістики та володіння цифровими інструментами.

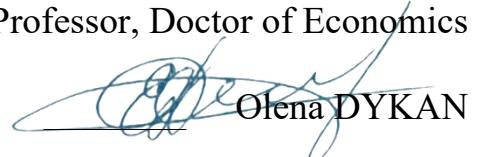
Розроблено «Еко-імерсивну модель емпіричного навчання», що інтегрує мультисенсорний зворотний зв'язок та візуалізацію екологічного впливу, а також запропоновано типологію віртуальних сценаріїв для моделювання сталіх ланцюгів поставок.

Результати дослідження можуть бути використані закладами вищої освіти для модернізації навчальних програм з SCM, створення віртуальних лабораторій та розроблення інструментів VR-симуляції задля забезпечення підготовки фахівців систем сталої логістики.

# **Ukrainian State University of Railway Transport**

**Faculty of Economics**

**Department of Management, Public Administration and HR Technologies**


**Higher Education Level:** Master

**Educational Programme:** Sustainable Logistics and Supply Chain Management

**Specialty:** 073 "Management"

**APPROVED**

Head of Department  
Professor, Doctor of Economics



Olena DYKAN

September 09, 2025.

## **ASSIGNMENT FOR THE MASTER'S QUALIFICATION WORK**

Ihor ROMANOVYCH

1 Topic «Exploring The Application Of Metaverse In Supply Chain Management Education»

supervisor Olena Hulay, Candidate of Economic Sciences, Associate Professor.

approved by the Order of the Faculty of Economics dated February 07, 2025 No. 58/25

2 The deadline for submission of completed work by a higher education applicant is December 12, 2025

3 Initial data Scientific and methodological sources on supply chain management, immersive technologies (VR/AR) and the metaverse; regulatory documents and strategies for the digital transformation of education; results of an empirical survey of students and teachers of logistics specialities conducted by the author in 2024–2025; technical documentation and analytical reports on the functionality of modern digital twin platforms and virtual simulation environments.

4 Content of the calculation and explanatory note (list of issues to be developed)

The Essence and Evolution of the Metaverse Concept: Technological and Educational Aspects. Theoretical Approaches to Learning in the Metaverse: Adaptation of D. Kolb's Experiential Learning Model. The Role of Digital Transformation and Immersive Technologies in Supply Chain Management (SCM). Analysis of Current SCM Teaching Practices: Global Trends and Sustainability Challenges. Research Methodology and Results of the Stakeholder Survey Regarding Readiness for Digitalisation. Assessment of the Gap Between Traditional Teaching Methods and Industry 4.0 Requirements for Green Skills. Methodological Approach to Integrating Metaverse Tools into SCM Training. Structure and Dynamics of Virtual Learning Environments for Supply Chain Modelling (Use Cases). Psychological and Organisational Factors Influencing the

Implementation of the Metaverse. Development of a Conceptual Model for Improving Learning Effectiveness and Shaping Environmental Awareness (Revised Framework).

5 List of graphic material

1 Theoretical and Methodological Foundations for Using the Metaverse in Logistics Education – two slides (Theoretical Framework; Input-Process-Outcome Model). 2 Empirical Study of the State of Education and the Need for Digitalisation in SCM – four slides (Empirical Study Results; Competency Gaps; Integral Index of Education Alignment; Platform Analysis). 3 Development of a Conceptual Model for the Application of the Metaverse in Supply Chain Management and Sustainable Logistics Education – three slides (Methodological Approach; Use Cases and Metaverse Reaction; Eco-Immersive Experiential Learning Model and Economic Efficiency).

6 Individual Section Consultants

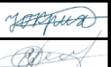
| Section | Surname, initials, title and academic degree<br>Consultant | Signature, date           |              |
|---------|------------------------------------------------------------|---------------------------|--------------|
|         |                                                            | The task was issued<br>by | task<br>Took |
|         |                                                            |                           |              |
|         |                                                            |                           |              |
|         |                                                            |                           |              |
|         |                                                            |                           |              |
|         |                                                            |                           |              |

7 Assignment Date September 09, 2025

**CALENDAR PLAN**

| Stage name                                                                                                                              | Deadline for the implementation of the stages of work | Note |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------|
| 1 Theoretical and methodological foundations for the use of the metaverse in logistics education                                        | 10.10.2025                                            |      |
| 2 Empirical study of the state of education and the need for digitalization in SCM                                                      | 05.11.2025                                            |      |
| 3 Development of a conceptual model for the application of the metaverse in supply chain management and sustainable logistics education | 09.12.2025                                            |      |
| Graphic part                                                                                                                            | 10.12.2025                                            |      |

Higher education applicant


Ihor ROMANOVYCH

Supervisor

Olena HULAY

## Contents

|                                                                                                                                                           |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Introduction                                                                                                                                              | 7  |
| 1 Theoretical and methodological foundations for using the metaverse in logistics education                                                               | 10 |
| 1.1 The essence and evolution of the metaverse concept: technological and educational aspects                                                             | 10 |
| 1.2 Theoretical approaches to learning in the metaverse: adaptation of D. Kolb's experiential learning model for logistics education                      | 13 |
| 1.3 Digital transformation, immersive technologies and a conceptual model of the impact of the metaverse on learning outcomes in supply chain management  | 16 |
| Conclusions to Chapter 1                                                                                                                                  | 22 |
| 2 Empirical study of the state of education and the need for digitalisation in SCM                                                                        | 24 |
| 2.1 Analysis of current SCM teaching practices: global trends and sustainability challenges                                                               | 24 |
| 2.2 Research methodology and data collection: stakeholder survey                                                                                          | 27 |
| 2.3 Stakeholder survey results and their interpretation                                                                                                   | 30 |
| 2.4 Assessment of the gap between traditional methods and Industry 4.0 requirements for green skills: analytical, competency and technological dimensions | 33 |
| Conclusions to Chapter 2                                                                                                                                  | 38 |
| 3 Development of a conceptual model for the application of the metaverse in supply chain management and sustainable logistics education                   | 41 |
| 3.1 Methodological approach to integrating metaverse tools into SCM training                                                                              | 41 |
| 3.2 Structure and dynamics of virtual learning environments for supply chain modelling (use cases)                                                        | 44 |

|                                                                                    |       |                 |                                                                                     |      |                       |       |        |
|------------------------------------------------------------------------------------|-------|-----------------|-------------------------------------------------------------------------------------|------|-----------------------|-------|--------|
|                                                                                    |       |                 |                                                                                     |      | KPM 073. 12111570 ПІЗ |       |        |
| Rev.                                                                               | Sheet | Document No.    | Signature                                                                           | Date |                       |       |        |
| Prepared by                                                                        |       | Romanovych I.Y. |  |      |                       |       |        |
| Reviewed by                                                                        |       | Hulay O.S.      |  |      |                       |       |        |
| Standards Control                                                                  |       | Krykhtina Y.O.  |  |      |                       |       |        |
| Approved by                                                                        |       | Dykan O.V.      |  |      |                       |       |        |
| <i>Exploring The Application Of Metaverse In Supply Chain Management Education</i> |       |                 |                                                                                     |      | Ref..                 | Sheet | Sheets |
|                                                                                    |       |                 |                                                                                     |      | 5                     | 80    |        |
|                                                                                    |       |                 |                                                                                     |      | UkrSURT               |       |        |

|                                                                                                                                         |    |
|-----------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.3 Psychological and organisational factors influencing the implementation of the metaverse in SCM training                            | 47 |
| 3.4 Conceptual model for improving learning effectiveness and shaping environmental awareness through the metaverse (Revised Framework) | 51 |
| Conclusions to Chapter 3                                                                                                                | 62 |
| Conclusion                                                                                                                              | 65 |
| List of sources                                                                                                                         | 68 |
| Appendix A                                                                                                                              | 74 |
| Appendix B                                                                                                                              | 77 |
| Appendix C                                                                                                                              | 78 |
| Appendix D                                                                                                                              | 79 |
| Appendix E                                                                                                                              | 80 |

## List of sources

- 1 Krykawski, E. V., Chornopyska, N. V. Logistics Management: Textbook. Lviv: Lviv Polytechnic Publishing House, 2020. 368 p.
- 2 Industry 4.0: New Challenges and Opportunities for Logistics. Effective Economy. 2023. No. 5. URL: <http://www.economy.nayka.com.ua/?op=1&z=8902>
- 3 Grygorak M. Yu. Formation of Logistics Competencies in the Context of Economic Digitalisation. Logistics: Theory and Practice. 2022. No. 1. P. 15–24.
- 4 Bykov V. Yu., Burov O. Yu. Digital learning environment: new technologies and requirements for education. Information technologies and learning tools. 2021. Vol. 82, No. 2. Pp. 1–20.
- 5 Ball M. The Metaverse: And How It Will Revolutionise Everything. New York: Liveright, 2022. 352 p.
- 6 Mystakidis S. Metaverse. Encyclopedia. 2022. Vol. 2(1). P. 486–497.
- 7 Ball M. Framework for the Metaverse. MatthewBall.vc. 2021. URL: <https://www.matthewball.vc/all/forwardtothemetaverseprimer>
- 8 O'Reilly T. What Is Web 2.0: Design Patterns and Business Models for the Next Generation of Software. Communications & Strategies. 2007. No. 65. P. 17–37.
- 9 Suh A., Prophet J. The state of immersive technology research: A literature analysis. Computers in Human Behaviour. 2018. Vol. 86. P. 77–90.
- 10 Spivakovsky O. V., Petukhova L. E. Immersive technologies in education: theory and practice. Pedagogical Sciences. 2021. Issue 94. Pp. 45–51.
- 11 Slater M. Place illusion and plausibility illusion in virtual environments. Philosophical Transactions of the Royal Society B. 2009. Vol. 364. P. 3549–3557.
- 12 Milgram P., Kishino F. A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems. 1994. Vol. E77-D, No. 12. P. 1321–1329.
- 13 Duan Y., Edwards J. S., Dwivedi Y. K. Artificial intelligence for decision making in the era of Big Data. International Journal of Information Management. 2019. Vol. 48. P. 63–71.

14 Min H. Artificial intelligence in supply chain management: theory and applications. *International Journal of Logistics*. 2010. Vol. 13, No. 1. P. 13–39.

15 Tapscott D., Tapscott A. *Blockchain Revolution: How the Technology Behind Bitcoin Is Changing Money, Business, and the World*. London : Portfolio, 2016. 358 p.

16 Grieves M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behaviour in Complex Systems. *Transdisciplinary Perspectives on Complex Systems*. 2017. P. 85–113.

17 Ivanov D., Dolgui A. A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. *Production Planning & Control*. 2021. Vol. 32, No. 9. P. 775–788.

18 Kritzinger W. Digital Twin in manufacturing: A categorical literature review and classification. *IFAC-PapersOnLine*. 2018. Vol. 51, No. 11. P. 1016–1022.

19 Witmer B. G., Singer M. J. Measuring presence in virtual environments: A presence questionnaire. *Presence*. 1998. Vol. 7, No. 3. P. 225–240.

20 Kolb D. A. *Experiential Learning: Experience as the Source of Learning and Development*. Englewood Cliffs, NJ : Prentice-Hall, 1984. 256 p.

21 Kolb A. Y., Kolb D. A. Experiential learning theory: A dynamic, holistic approach to management learning, education and development. *The SAGE Handbook of Management Learning, Education and Development*. London : SAGE, 2009. P. 42–68.

22 Kononova O. Ye. Adaptation of experiential learning models for VR environments. *Educational Technology & Society*. 2023. Vol. 26(1). P. 112–125.

23 Winkelhaus S., Grosse E. H. Logistics 4.0: a systematic review towards a new logistics system. *International Journal of Production Research*. 2020. Vol. 58, No. 1. P. 18–43.

24 Christopher M. *Logistics & Supply Chain Management*. 5th ed. London : Pearson, 2016. 328 p.

25 Ben-Daya M., Hassini E., Bahroun Z. Internet of things and supply chain management: a literature review. *International Journal of Production Research*. 2019.

26 Treiblmaier H. The impact of the blockchain on the supply chain: a theory-based research framework. *Supply Chain Management*. 2018. Vol. 23, No. 6. P. 545–559.

27 Aliche K., Rexhausen D., Seyfert A. Supply Chain 4.0 in consumer goods. *McKinsey & Company Report*. 2017. 12 p.

28 Waller M. A., Fawcett S. E. Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. *Journal of Business Logistics*. 2013. Vol. 34, No. 2. P. 77–84.

29 DHL Trend Radar. *Logistics Trend Radar 6.0*. Troisdorf : DHL Customer Solutions & Innovation, 2022. 56 p.

30 Maersk Strategy Report. *Digital Transformation in Global Logistics*. Copenhagen: A.P. Moller – Maersk, 2023. URL: <https://www.maersk.com/digital-solutions>

31 Gartner Report. *Supply Chain Top 25 for 2023: The Supply Chain Grid*. Stamford: Gartner Inc., 2023.

32 McKinnon A., Browne M., Whiteing A. *Green Logistics: Improving the Environmental Sustainability of Logistics*. 3rd ed. London: Kogan Page, 2015. 448 p.

33 Ilomäki L., Lakkala M. Digital learning environments frameworks. *Encyclopedia of Education and Information Technologies*. Cham: Springer, 2019. P. 1–7.

34 Bushnell D. S. Input-process-output: A model for school accountability. *Educational Technology*. 1990. Vol. 10. P. 31–36.

35 Dalgarno B., Lee M. J. What are the learning affordances of 3-D virtual environments? *British Journal of Educational Technology*. 2010. Vol. 41, No. 1. P. 10–32.

36 Edmondson A. C. *The Fearless Organisation: Creating Psychological Safety in the Workplace*. Hoboken : Wiley, 2019. 256 p.

37 Khan H., Lashari S. A. Metaverse in education: An overview of its potential and challenges. *Journal of Metaverse*. 2023. Vol. 3, No. 1. P. 1–9.

38 Ahn S. J., Bailenson J. N. Immersive virtual environments and environmental- -behaviour. *Journal of Environmental Psychology*. 2011. Vol. 31, No. 3. P. 231–239.

39 World Economic Forum. *Defining the Skills for the Future of Supply Chain*. Geneva: WEF, 2023. 28 p.

40 Simchi-Levi D., Haren P. How the War in Ukraine Is Further Disrupting Global Supply Chains. *Harvard Business Review*. 2022. URL: <https://hbr.org/2022/03/how-the-war-in-ukraine-is-further-disrupting-global-supply-chains>

41 European Commission. *The European Green Deal*. Brussels: COM, 2019. 24 p.

42 Seuring S., Müller M. From a literature review to a conceptual framework for sustainable supply chain management. *Journal of Cleaner Production*. 2008. Vol. 16, No. 15. P. 1699–1710.

43 Smirnov, I. G. Logistics education in Ukraine: problems and prospects for integration into the European space. *Scientific notes of KROK University*. 2021. No. 2 (62). Pp. 112–120.

44 DHL Trend Research. *Artificial Intelligence in Logistics*. Troisdorf: DHL, 2018. 45 p.

45 Gartner. *Top Supply Chain Technology Trends for 2024*. URL: <https://www.gartner.com/en/supply-chain/trends/supply-chain-technology-trends>

46 McKinsey Global Institute. *Skill shift: Automation and the future of the workforce*. New York: McKinsey & Company, 2018. 84 p.

47 MIT Centre for Transportation & Logistics. *Education Strategy Report 2024*. Cambridge: MIT, 2024.

48 Treiblmaier H. Gamification in Logistics and Supply Chain Management Education. *Logistics*. 2021. Vol. 5, No. 4. P. 76.

49 Rejeb A., et al. Virtual reality in the supply chain: a bibliometric analysis and a review. *International Journal of Logistics Research and Applications*. 2023. Vol. 26. P. 1–25.

50 Pettit T. J., Croxton K. L., Fiksel J. Ensuring Supply Chain Resilience: Development and Implementation of an Assessment Tool. *Journal of Business Logistics*. 2013. Vol. 34, No. 1. P. 46–76.

51 Regulation (EU) 2023/956 of the European Parliament and of the Council of 10 May 2023 establishing a carbon border adjustment mechanism. *Official Journal of the European Union*. 2023. L 130. P. 52–104.

52 Senge P. M. *The Fifth Discipline: The Art and Practice of the Learning Organisation*. New York: Doubleday, 2006. 464 p.

53 OECD Skills Outlook 2023: Skills for a Resilient Green and Digital Transition. Paris: OECD Publishing, 2023.

54 World Economic Forum. *The Future of Jobs Report 2023*. Geneva: WEF, 2023. 296 p.

55 Cottrill K. The Supply Chain Talent Gap. *MIT Supply Chain Management Review*. 2019. URL: <https://www.scmr.com>

56 Davis F. D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*. 1989. Vol. 13, No. 3. P. 319–340.

57 Venkatesh V., Morris M. G., Davis G. B., Davis F. D. User acceptance of information technology: Toward a unified view. *MIS Quarterly*. 2003. Vol. 27, No. 3. P. 425–478.

58 Creswell J. W. *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches*. 4th ed. Thousand Oaks : SAGE, 2014. 273 p.

59 Likert R. A technique for the measurement of attitudes. *Archives of Psychology*. 1932. Vol. 22, No. 140. P. 1–55.

60 Freeman R. E. *Strategic Management: A Stakeholder Approach*. Boston: Pitman, 1984. 276 p.

61 Teddlie C., Tashakkori A. *Foundations of Mixed Methods Research*. Thousand Oaks: SAGE, 2009. 386 p.

62 Hofmann E., Rüsch M. Industry 4.0 and the current status as well as future prospects on logistics. *Computers in Industry*. 2017. Vol. 89. P. 23–34.

63 Dubois D. D., Rothwell W. J. *Competency-Based Human Resource*

Management. Palo Alto: Davies-Black Publishing, 2004. 306 p.

64 Rosen K. T., Howard A. L. Future of Logistics: The Digital Transformation. Berkeley Real Estate Journal. 2021.

65 Kahneman D. Thinking, Fast and Slow. New York: Farrar, Straus and Giroux, 2011. 499 p.

66 Sheppard S. R. J. Visualising Climate Change: A Guide to Visual Communication of Climate Change and Developing Local Solutions. London: Earthscan, 2012.

67 Directive (EU) 2022/2464 of the European Parliament and of the Council (CSRD). Official Journal of the European Union. 2022.

68 WBCSD/WRI. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. Washington: WRI, 2004. 116 p.

69 ISO 14083:2023. Greenhouse gases — Quantification and reporting of greenhouse gas emissions arising from transport chain operations. Geneva: ISO, 2023.

70 Field A. Discovering Statistics Using IBM SPSS Statistics. 5th ed. London: SAGE, 2018. 1086 p.

71 Pearson K. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London. 1895. Vol. 58. P. 240–242.

72 Bates A. W. Teaching in a Digital Age: Guidelines for designing teaching and learning. Vancouver: Tony Bates Associates Ltd, 2015.

73 Smart Freight Centre. GLEC Framework for Logistics Emissions Methodologies. 2.0 ed. Amsterdam: SFC, 2019.

74 Chopra S., Meindl P. Supply Chain Management: Strategy, Planning, and Operation. 7th ed. London: Pearson, 2019. 528 p.

75 Taniguchi E., Thompson R. G. City Logistics: Mapping The Future. Boca Raton: CRC Press, 2015. 230 p.

76 Revans R. W. Action Learning: New Techniques for Management. London: Blond & Briggs, 1980.

77 Banks J., Carson J. S., Nelson B. L. Discrete-Event System Simulation. 5th ed. Upper Saddle River: Pearson, 2010. 624 p.