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A heuristic approach to solving the minimum vertex cover problem 
using guaranteed predictions 
 

This paper presents a heuristic approach to solving the minimum vertex cover problem with guaranteed predictions, 
which can be effectively implemented on the multi-core platforms because of the high degree of the instruction-level 
parallelism. The C++ program to compute and display the figures of the test results for each experiment was written. 
According to the results this approach is optimized for the very dense graphs.  
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Introduction 

The problem of finding the minimum vertex cover for 
a random graph was one of the first tasks which were 
called NP-complete and denoted by NPC [1]. There were 
many attempts of developing the exact algorithms which 
would allow the problem be solved in polynomial time. 
However, both in theory and practice, it is not yet known a 
fast method which uses a reasonable amount of time for 
computing the solution. There are only approximation 
algorithms which are optimal up to a constant factor [2]. In 
other words, they return a vertex cover which has a number 
of vertices no more than k times bigger in comparison with 
the minimum cover possible (k is a constant factor of the 
particular approximation algorithm). 

Over the last few decades this problem has been 
studied with great attention. It is connected with the fact 
that the minimum vertex cover problem is used in many 
important and contemporary fields of science and 
technology. In particular, it is widely used in a 
telecommunication system monitoring [3] by means of 
which the areas with slow performance and/or damaged 
parts of a network can be detected. The minimum vertex 
cover algorithms, which provide mechanisms and means of 
detection and analysis of the regions of similarity inside a 
DNA and relationships between the complete genome 
sequences [4], play an important role in the biological 
sequence alignment (protein, DNA, RNA etc.). Such 
algorithms are also crucial in resolving conflicts of the 
many problems of computational biology [5].   

The importance of this research can be easily seen by 
examining the coordination of the shared resources in the 
heterogeneous high performance computing systems, 
where the choice of the effective and efficient method of 
solving the minimum vertex cover problem plays crucial 
role in providing stability in the high intensity task 
management environment and obtaining the most cost-
efficient level of performance in the distributed systems.  
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It is much easier to expand and manage such systems when 
dealing with an algorithm that has an improved time 
complexity. 

 
Review of recent research and publications 

In the recent years the efforts of finding an 
asymptotically optimal algorithm for solving the minimum 
vertex cover problem were done taking into account its 
parameterized complexity [6]. The main idea behind the 
parameterized complexity is that it is possible to change 
the structure of the input parameters to get the practical 
tractability. Hence, on the one hand there is a big set of the 
input values and on the other hand there is a wide variety 
of parameters which can affect the overall computational 
complexity of the algorithm being analyzed. This approach 
makes it possible to form the more flexible classification of 
the NP-hard problems in comparison with the classical 
methodology when complexity is measured in terms of the 
input size only. 

If it is true that P ≠ NP, there must exist many natural 
problems that require exponential or worse running time. 
However, using a parameterized algorithm allows us to 
solve such problems efficiently for any input set of values 
provided that some parameter k is fixed. In other words, if 
there exist some function f(k) that affects the algorithm 
complexity and there is a k-parameter that has a relatively 
small value, there is an algorithm which solves the 
problems in O(f(k) × n O(1)) time, where n is a number of 
the input values. 

Problems that have fixed k-parameter are called 
parameterized problems and belonged to the complexity 
class FPT (fixed-parameter tractable). The vertex cover 
problem is said to be in this class too. Quite a long time the 
optimized parameterized algorithms are developed and 
investigated. At the present time one of the quickest known 
algorithms solves this problem in O(kn  × 1.2738k) time 
[7], where n is a number of vertices of a random graph and 
k is the size of the vertex cover. 
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The approximation algorithms are often used for 
solving the optimization problems. One of the most 
important properties of the approximation algorithm is an 
approximation factor. It is also called a relative 
performance guarantee and can be defined as: 

 
p(i) ≥ max (f(i) / OPT; OPT/ f(i)), (1) 

 
where OPT is an optimal solution for the problem instance 
i and f(i) is the cost of the solution of an approximation 
algorithm. 

 
The most advanced method up to this day was 

discussed in the work [8] where it was proven that there 
exist an algorithm with the approximation factor equal to 

(2 -  Θ(
nlog

1
)). Such algorithm is said to be an p(i)-

approximation algorithm. 
Among the weakest sides of the approaches to solving 

the minimum vertex cover problem is the lack of attention 
to the problem of parallelization of operations by means of 
which the efficiency of execution in a distributed 
environment could be increased. Many of the known 
algorithms have too high value of the fixed parameter 
which reduces performance of the system. 

This article treats and summarizes an approach to 
solving the minimum vertex cover problem for the random 
graphs that is optimal for using in the distributed 
environments under high load conditions. The main 
purpose is to create an algorithm with improved 
complexity bounds in comparison with the existing 
methods. 

 
An algorithm with the guaranteed predictions 

The term “arbitrary undirected graph” is used here for 
the sake of the problem formalization. It implies an 
ordered pair G(V, E) where V is a set of vertices and E is a 
set of edges or links. An edge in the undirected graph is 
represented by the unordered pair (u, v) ∈  Е. The edges in 
such a graph have no orientation.  

The vertex covers of the arbitrary undirected graph are 
the subsets of vertices VV ⊆′  such that each edge (u, v) 

∈  G meets the following requirements: VvVu ′∈′∈ , . 

The minimum vertex cover problem is to find a vertex 
cover of smallest possible size. The exact algorithms for 
solving the minimum vertex cover have the time 
complexity that is generally increased with the number of 
vertices in a graph. In this paper we focus on the effective 
approximation algorithm with the guaranteed predictions 
which uses heuristic guaranteed predictions, has improved 
local searching ability and gives near to optimal solution. 
The term "prediction" is used to refer to a set of equations 
by means of which it is possible to choose the most 
optimal direction in the algorithm pipeline. 

The proposed algorithm consists of two different parts: 
the main procedure A that has 11 basic steps and an 
additional procedure B that checks a given graph for the 
presence of the leaf vertices (the vertices with degree one, 
i.e. they are the endpoints of exactly one edge).  

• Procedure А. Basic steps for solving the 
minimum vertex cover problem: 

Step 1. Given a graph G(V, E), an initial nonlinear 
equation is formed as: 

 

0)( =jiz xxf , (2) 

 

where ji xx  are such pairs of the vertices that form the full 

cover of the graph. 
Step 2. The equation (2) is then processed by the 

procedure B. If this procedure returns the second possible 
solution (all possible solutions are stated in the procedure 
B description), then the minimum vertex cover will be 
found and it will be represented by the full set of values 

Ï
zR which will be returned by both procedures. Therefore, 

procedure A will be finished. However, if procedure B 
yields the first or the third possible result, we must go to 
the next step. 

Step 3. Depending on the results that had been 
obtained on the previous step, in the equation (2) or its 

derivative 0)(| =jiz xxf  which contain the partial set of 

the vertex cover the term mlp xxS =* with the maximum 

frequency ml hh +  (maximum degree of the graph’s 

vertices) is formed along with such three variables: 

0,0 == ml xx ; 0,1 == ml xx ; 1,0 == ml xx . 

Then move on to the next step. 
Step 4. The variable z is then assigned the value of 1. 

The first pair of variables 0,0 == ml xx  is substituted 

into the current equation that is now defined 

as 0)(1 =ji xxf . The variables lx  and mx  are added into 

the partial result ×
zR  and the new equation is processed by 

the procedure B. If we get the second possible solution 
from the procedure B, then the minimum vertex cover will 
be found - it will be represented by the full set of 

values Ï
zR . After saving this result, move on to the next 

step. 
Step 5. Depending on the result obtained from the 

procedure B on the previous step, an equation 

0)(1 =ji xxf  (or 0)(|1 =ji xxf ) along with its partial 

vertex cover and all full sets of values ÏzR  are added to 

the set M. Then move on to the next step. 
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Step 6. The variable z is assigned the value of 2. The 

second pair of variables 0,1 == ml xx  is substituted into 

the current equation that has the form of 0)(2 =ji xxf . 

All terms of the equation which contain just one 

variable }{ tx are set to null. After that the equation will be 

defined as 0)(|2 =ji xxf . All variables }{ jx  adjacent to 

}{ tx  and the variable mx  are added into the partial 

solution ×
zR . The new equation is processed by the 

procedure B. If we get the second possible solution from 
the procedure B, then the minimum vertex cover will be 
found and it will be represented by the full set of 

values Ï
zR . After saving the result, move on to the next 

step. 
Step 7. Depending on the result obtained from the 

procedure B on the previous step, an equation 

0)(|2 =ji xxf  (or 0)(||
2 =ji xxf ) along with its partial 

vertex cover and all sets Ï
zR from the previous steps are 

added to the set M. Then move on to the next step. 
Step 8. The variable z is assigned the value of 3. The 

third pair of variables 1,0 == ml xx  is substituted into 

the current equation that is got a new form 

as 0)(3 =ji xxf . All terms of the equation which contain 

just one variable }{ tx are set to null. The equation will be 

defined now as 0)(|3 =ji xxf . All variables }{ jx  

adjacent to }{ tx  and the variable lx  are added into the 

partial solution ×
zR . The equation is then processed by the 

procedure B. If we get the second possible solution from 
the procedure B, then the minimum vertex cover will be 

found - it will be represented by the full set of values Ï
zR . 

Save it and move on to the next step. 
Step 9. Depending on the result obtained from the 

procedure B on the previous step, an equation  

0)(|3 =ji xxf  (or 0)(||
3 =ji xxf ) along with its partial 

vertex cover and all sets ÏzR are added to the set M. Then 

move on to the next step. 
Step 10. Check if all the equations in the M have got 

the form of identity 0=0, if true – choose among all sets 

}{ Ï
zR  the minimum one, it will be the minimum vertex 

cover of the given graph. Otherwise, go to the next step. 
Step  11. Among the equations 

0)(1 =ji xxf , 0)(2 =ji xxf , 0)(3 =ji xxf  which 

haven’t got the form of identity 0=0 choose the equation 

0)(* =jii xxf  with the most number of the terms. Then 

the equation (2) that was used on the previous step is 

substituted by the equation 0)(* =jii xxf . Then move on 

to the step 2 and repeat all the steps until the minimum 
vertex cover is found. 

Let's describe the additional procedure B that is often 
executed inside the main operations loop. It is required for 
proper handling of the leaf or pendant vertices of the 
graph. When such a vertex is found it is removed from the 
graph and its adjacent vertex is put into the cover. Putting 
the vertex into the cover implies removing the vertex and 
all its adjacent edges from the graph and moving to the 
next step of the algorithm. 

• Additional procedure B. Leaf vertices 
checking: 

Step 1. Check if the equation (2) has the terms 

)( jijq xxfxx ∈  with the variables }{ qx  which occur 

only once. If it is true, then all the variables }{ jx  which 

are neighbors of the }{ qx variables are set to null and 

added to the partial solution×
iR while the equation (2) is 

transformed into 0)(| =jiz xxf  with smaller number of 

variables. Then move on to the next step. Otherwise, the 
procedure B is finished. 

Step 2. Check if the equation 0)(| =jiz xxf  has got 

the form of identity 0=0. If it is true, then the partial 

solution ×
zR is transformed into the full solution Ï

zR , i.e. 

the vertex cover of the graph is defined by the variables 

from the Ï
zR , therefore, the procedure is finished. 

Otherwise, the equation (2) is transformed into 

0)(| =jiz xxf  and then we must go to the first step again. 

The additional procedure B can yield such three 
possible results:  

1. The equation (2) is not changed. 
2. The equation (2) has got the form of identity 0=0 

and there is the full solution Ï
zR . 

3. The equation (2) is transformed into the 

equation 0)(| =jiz xxf  with smaller number of the 

variables and some partial solution×zR . 

Let’s look at an example to see how we apply our 
heuristic algorithm for solving the minimum vertex cover 
problem. Table 1 contains all connections of random graph 
vertices. 
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Table 1 
Connections of the vertices of the graph 

 

Vertex 1:   3 6 7 8 12  Vertex 7:   1 3 5 6 8 

Vertex 2:   5 6 9 11 12 Vertex 8:   1 3 4 5 6 7 9 

Vertex 3:   1 4 5 7 8 9 10 11 Vertex 9:   2 3 4 6 8 10 12 

Vertex 4:   3 6 8 9 10 Vertex 10:   3 4 9 11 

Vertex 5:   2 3 7 8 11 12 Vertex 11:   2 3 5 10 

Vertex 6:   1 2 4 7 8 9 Vertex 12:   1 2 5 9 

Table 2 contains the list of all the vertex covers and 
independent sets (cover - set). An independent set of a 
graph is such a set of vertices no two of which are 
adjacent. 

 
 
 
 
 
 

 
Table 2 

Vertex covers and independent sets of a given graph 
 

1)  1 2 3 5 6 8 9 10 (8)    -    4 7 11 12 (4) 11)  1 3 4 5 6 8 9 11 12 (9)    -    2 7 10 (3) 
2)  1 2 3 4 5 6 7 9 10 (9)    -    8 11 12 (3) 12)  1 3 5 6 8 9 10 11 12 (9)    -     2 4 7 (3) 
3)  1 2 3 4 5 6 7 9 11 (9)    -    8 10 12 (3) 13)  2 3 4 5 6 7 8 10 12 (9)    -     1 9 11 (3) 
4)  1 2 3 4 5 6 8 9 11 (9)    -     7 10 12 (3) 14)  2 3 4 6 7 8 9 11 12 (9)    -     1 5 10 (3) 
5)  1 2 3 4 5 6 8 10 12 (9)    -     7 9 11 (3) 15)  2 3 4 6 7 8 10 11 12 (9)    -     1 5 9 (3) 
6)  1 2 3 4 5 7 8 9 10 (9)    -     6 11 12 (3) 16)  2 3 5 6 7 8 9 10 12 (9)    -     1 4 11 (3) 
7)  1 2 3 4 5 7 8 9 11 (9)    -     6 10 12 (3) 17)  2 3 6 7 8 9 10 11 12 (9)    -     1 4 5 (3) 
8)  1 2 3 4 7 8 9 11 12 (9)    -     5 6 10 (3) 18)  3 4 5 6 7 8 9 11 12 (9)    -     1 2 10 (3) 
9)  1 2 4 5 7 8 9 10 11 (9)    -     3 6 12 (3) 19)  3 5 6 7 8 9 10 11 12 (9)    -    1 2 4 (3) 
10)  1 3 4 5 6 7 9 11 12 (9)    -     2 8 10 (3) 20)  1 4 5 6 7 8 9 10 11 12 (10)    -   2 3 (2) 

 
The equation of the given graph is defined as: 
 

Х1Х3+Х1Х6+Х1Х7+Х1Х8+Х1Х12+Х2Х5+Х2Х6+Х2Х9+ 
+Х2Х11+Х3Х4+Х3Х5+Х3Х7+Х3Х8+Х3Х9+Х3Х10+ 
+Х3Х11+Х4Х6+Х4Х8+Х4Х9+Х4Х10+Х5Х7+Х5Х8+ 
+Х5Х11+Х5Х12+Х6Х7+Х6Х8+Х6Х9+Х7Х8+Х8Х9+ 
+Х9Х10+Х9Х12+Х10Х11=0. (3) 

 
Table 3 contains the frequencies of the variables 

presence in the terms of the equation (3). 
 

Table 3 
The frequencies for each of the variables of the 

equation (3) 
 

iX  1 2 3 4 5 6 7 8 9 10 11 12 
x
ih  5 5 8 5 6 6 5 7 7 4 4 4 

 
Let’s choose the term with the maximum frequency of 

the appropriate variable in the equation (3). In this example 
Х3Х8 is the best matching term with the frequency of 
8+7=15. Taking into account this term the equation (3) is 
transformed into the system of three equations each of 
which contains the following values of the variables: (Х3 

=0, Х8 =0); (Х3 =0, Х8 =1); (Х3 =1, Х8 =0). 
The first equation with variables Х3 =0 and Х8 =0 is 

defined as: 
 

Х1Х6+Х1Х7+Х1Х12+Х2Х5+Х2Х6+Х2Х9+Х2Х11+Х2Х12+
Х4Х6+Х4Х9+Х4Х10+Х5Х7+Х5Х11+ 
+Х5Х12+Х6Х7+Х6Х9+Х9Х10+Х9Х12+Х10Х11=0. (4) 

 
The variables Х3 and Х8 are included into the partial 

cover. 
The second equation is formed taking into account that 

Х3 =0, Х8 =1. As Х8 =1 it follows that Х1 =0, Х4 =0, Х5 =0, 
Х6 =0, Х7 =0, Х9 =0 and the equation (3) is turned into this 
form: 

 
Х2Х11+ Х2Х12 + Х10Х11=0. (5) 

 
The partial cover now contains Х3 and the variables 

Х1, Х4, Х5, Х6, Х7, Х9. 
In the same way we form the third equation with Х3 

=1and Х8 =0. Provided that Х3 =1 we set the following 
variables to null: Х1 =0, Х4 =0, Х5 =0, Х6 =0, Х7 =0, Х9 =0, 
Х10 =0. Hence, the third equation is defined as: 

 
Х2Х6+ Х2Х12 =0. (6) 

 
At this stage the partial cover contains Х8 and the Х1, 

Х4, Х5, Х6, Х7, Х9, Х10. Since all the terms of the equations 
(5) and (6) are included in the equation (4) they are 
excluded from the further analysis. 

Table 4 contains the frequencies of the variables 
presence in the terms of the equation (4). 
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Table 4 
The frequencies for each of the variables of the 

equation (4) 
 

iX  1 2 4 5 6 7 9 10 11 12 
x
ih  3 5 3 4 5 3 4 3 3 4 

 
Again, we choose the term with the maximum 

frequency of the appropriate variable, now it is located in 
the equation (4). It’s Х2Х6 with the total frequency of 
5+5=10. Taking into account this term the equation (4) is 
transformed into the system of three equations each of 
which contains the following pairs of the variables: (Х2 =0, 
Х6 =0); (Х2 =0, Х6 =1); (Х2 =1, Х6 =0). 

The first equation with the pair Х2 =0, Х6 =0 is defined 
as: 

 
Х1Х7+Х1Х12+Х4Х9+Х4Х10+Х5Х7+Х5Х11+Х5Х12+ 
+Х9Х10+Х9Х12+Х10Х11=0. (7) 

 
The partial cover now contains Х2, Х6 and the variables 

Х3, Х8 from the previous steps. The second equation is 
formed taking into account that Х2 =0, Х6 =1. As Х6 =1 it 
follows that Х1 =0, Х4 =0, Х7 =0 Х7 =0, Х9 =0 and the 
equation (4) is turned into this form: 

   
Х5Х7+Х5Х11+Х5Х12+ Х10Х11=0. (8) 

 
The variable Х2 and the variables Х1, Х4, Х7, Х9 are 

included into the partial solution. 
In the same way we form the third equation with the 

pair Х2 =1, Х6 =0. Provided that Х2 =1 we set the following 
variables to null: Х5 =0, Х9 =0, Х11 =0, Х12 =0. Hence, the 
third equation is defined as: 

 
Х1Х7+Х1Х12+Х2Х5+Х4Х10+Х5Х7=0. (9) 

 
The partial cover now contains Х6 and the variables Х5, 

Х9, Х11, Х12. Since all the terms of the equations (8) and (9) 
are included in the equation (7) they are excluded from the 
further analysis. 

Table 5 contains the frequencies of the variables 
presence in the terms of the equation (7). 

 
Table 5 

The frequencies for each of the variables of the 
equation (7) 

 

iX  1 4 5 7 9 10 11 12 
x
ih  2 2 3 2 3 3 2 3 

 
The term with the maximum frequency of the 

appropriate variable is chosen in the equation (7) as in the 
previous steps, now it is Х9Х10 with the total frequency of 

3+3=6. Taking into account this term the equation (7) is 
transformed into the system of three equations each of 
which contains the following pairs of the variables: (Х9 =0, 
Х10 =0); (Х9 =0, Х10 =1); (Х9 =1, Х10 =0).  

The first equation with the pair Х9 =0, Х10 =0 is 
defined as: 

 
Х1Х7+Х1Х12 +Х5Х7+Х5Х11+Х5Х12=0. (10) 

 
The second equation is formed taking into account that 

Х9 =0, Х10 =1. As Х10=1 it follows that Х4 =0, Х9 =0 Х11=0 
and the equation (7) is turned into this form: 

 
Х1Х7+Х1Х12+Х5Х7+Х5Х12=0. (11) 

 
The third equation is formed with the pair Х9 =1,  

Х10 =0. As Х9 =1 it follows that Х4 =0, Х9 =0, Х12 =0 and 
the equation (7) is turned into this form: 

 
Х1Х7+Х5Х7+Х5Х11=0. (12) 

 
Since all the terms of the equations (11) and (12) are 

included in the equation (10) they are excluded from the 
further analysis. 

The partial cover now contains the variables Х3, Х8, 
Х2, Х6, Х9, Х10.  

Let’s find again the frequencies of the variables 
presence in the terms of the equation (10). Table 6 depicts 
all the required variables along with their frequencies. The 
variable Х11 has degree one. Hence, it’s removed as a leaf 
vertex. 

 
Table 6 

The frequencies for each of the variables of the 
equation (10) 

 

iX  1 5 7 11 12 
x
ih  2 3 2 1 2 

 
After removing Х11 from the cover Х5 is set to null and 

included into the partial solution. The equation (10) is 
defined now as: 

 
Х1Х7+Х1Х12 =0. (13) 

 
Table 7 contains the frequencies of the variables 

presence in the terms of the equation (13). 
 

Table 7 
The frequencies for each of the variables of the 

equation (13) 
 

iX  1 7 12 
x
ih  2 1 1 
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Х7 is a leaf vertex that must be removed from the 
cover. Its adjacent vertex Х1 is put into the solution. The 
equation (13) has got the form of identity 0=0. Therefore, 
the minimum vertex cover of the given graph consists of 
the variables Х3, Х8, Х2, Х6, Х9, Х10, Х5, Х1. 

 

Experiment results 
The C++ program was written to verify validity of the 

algorithm. It makes it possible to randomly generate the 
graph instances with a different number of the vertices and 
a variable degree. The results of our algorithm with 
guaranteed predictions were compared with that of several 
other algorithms for the minimum vertex cover on the 
random graphs (algorithm based on greedy-degree 
heuristic method and algorithm based on greedy-edge). 

We performed 50 different tests. According to our 
analysis, the algorithm with guaranteed predictions is 
much more efficient in comparison with others. If the 
value of average degree gradually increases, other 
algorithms will have a great disadvantage in many aspects. 

 
Conclusions 

A large number of science and technology problems 
are proved to be NP-hard problems. The main idea behind 
solving NP-hard problem is to find approximation solution. 
This paper considers an effective approximation algorithm 
with guaranteed predictions which, according to 
experiment results, has an improved approximation degree. 
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Листровой С.В., Моцный С.В. Эвристический 
подход к решению задачи о наименьшем покрытии 
с использованием гарантированного 
прогнозирования. В данной статье описывается 
эвристический подход к решению задачи о 
наименьшем покрытии с использованием 
гарантированного прогнозирования. Благодаря 
высокой степени распараллеливания операций   
появляется возможность его эффективной реализации 
в системах с большим количеством вычислительных 
ядер. Была написана программа на языке 
программирования C++ для проведения 
экспериментального исследования. Согласно 
результатам, данный подход наиболее оптимизирован 
для графов с высокой плотностью. 
Ключевые слова: гарантированное прогнозирование, 
нелинейные уравнения, висячие вершины.  
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Лістровий С.В., Моцний С.В. Евристичний підхід до 
вирішення задачі про найменше покриття з 
використанням гарантованого прогнозування. У 
даній статті описується евристичний підхід до 
вирішення задачі про найменше покриття з 
використанням гарантованого прогнозування. Завдяки 
високому ступеню розпаралелювання операцій 
з'являється можливість його ефективної реалізації в 
системах з великою кількістю обчислювальних ядер. 
Була написана програма на мові програмування C++ 
для проведення експериментального дослідження. 
Згідно з результатами, даний підхід найбільш 
оптимізований для графів з високою щільністю. 
Ключові слова: гарантоване прогнозування, нелінійні 
рівняння, висячі вершини. 
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