Please use this identifier to cite or link to this item:
http://lib.kart.edu.ua/handle/123456789/14726
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sytnik, Borys | - |
dc.contributor.author | Bryksin, Volodymyr | - |
dc.contributor.author | Yatsko, Sergiy | - |
dc.contributor.author | Vashchenko, Yaroslav | - |
dc.date.accessioned | 2023-04-22T07:49:35Z | - |
dc.date.available | 2023-04-22T07:49:35Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Sytnik B. Construction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracy / B. Sytnik, V. Bryksin, S. Yatsko, Y. Vashchenko // Eastern-European Journal of Enterprise Technologies. - 2019. - Vol. 2, № 4(98). - С. 6-13. | uk_UA |
dc.identifier.issn | 1729-3774 (print); 1729-4061 (online) | - |
dc.identifier.uri | http://lib.kart.edu.ua/handle/123456789/14726 | - |
dc.description.abstract | EN: We have proposed an analytical method for limiting the complexity of neural-fuzzy models that provide for the guaranteed accuracy of their implementation when approximating functions with two or more derivatives. The method makes it possible to determine the required minimal number of parameters for systems that employ fuzzy logic, as well as neural models. We have estimated the required number of neurons (terms) in a model, which ensure the accuracy required for the area of a model curve to approach the system one along the sections of function approximation. The estimate for an approximation error was obtained based on the residual members of decomposition, in the Lagrangian form, of areas of the approximated system function into a Maclaurin series. The results received make it possible to determine the required number of approximation sections and the number of neurons (terms) in order to ensure the assigned relative and absolute error of approximation. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Технологічний Центр | uk_UA |
dc.relation.ispartofseries | Mathematics and Cybernetics - applied aspects; | - |
dc.subject | approximation | uk_UA |
dc.subject | guaranteed accuracy | uk_UA |
dc.subject | fuzzy logic | uk_UA |
dc.subject | neural networks | uk_UA |
dc.subject | imitation simulation | uk_UA |
dc.subject | апроксимація | - |
dc.subject | гарантована точність | - |
dc.subject | нечітка логіка | - |
dc.subject | нейронні мережі | - |
dc.subject | імітаційне моделювання | - |
dc.title | Construction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracy | uk_UA |
dc.title.alternative | Розробка аналітичного методу обмеження складності нейро-нечітких моделей гарантованої точності | - |
dc.type | Article | uk_UA |
Appears in Collections: | 2019 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Sytnik.pdf | 1.13 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.