Please use this identifier to cite or link to this item: http://lib.kart.edu.ua/handle/123456789/14726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSytnik, Borys-
dc.contributor.authorBryksin, Volodymyr-
dc.contributor.authorYatsko, Sergiy-
dc.contributor.authorVashchenko, Yaroslav-
dc.date.accessioned2023-04-22T07:49:35Z-
dc.date.available2023-04-22T07:49:35Z-
dc.date.issued2019-
dc.identifier.citationSytnik B. Construction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracy / B. Sytnik, V. Bryksin, S. Yatsko, Y. Vashchenko // Eastern-European Journal of Enterprise Technologies. - 2019. - Vol. 2, № 4(98). - С. 6-13.uk_UA
dc.identifier.issn1729-3774 (print); 1729-4061 (online)-
dc.identifier.urihttp://lib.kart.edu.ua/handle/123456789/14726-
dc.description.abstractEN: We have proposed an analytical method for limiting the complexity of neural-fuzzy models that provide for the guaranteed accuracy of their implementation when approximating functions with two or more derivatives. The method makes it possible to determine the required minimal number of parameters for systems that employ fuzzy logic, as well as neural models. We have estimated the required number of neurons (terms) in a model, which ensure the accuracy required for the area of a model curve to approach the system one along the sections of function approximation. The estimate for an approximation error was obtained based on the residual members of decomposition, in the Lagrangian form, of areas of the approximated system function into a Maclaurin series. The results received make it possible to determine the required number of approximation sections and the number of neurons (terms) in order to ensure the assigned relative and absolute error of approximation.uk_UA
dc.language.isoenuk_UA
dc.publisherТехнологічний Центрuk_UA
dc.relation.ispartofseriesMathematics and Cybernetics - applied aspects;-
dc.subjectapproximationuk_UA
dc.subjectguaranteed accuracyuk_UA
dc.subjectfuzzy logicuk_UA
dc.subjectneural networksuk_UA
dc.subjectimitation simulationuk_UA
dc.subjectапроксимація-
dc.subjectгарантована точність-
dc.subjectнечітка логіка-
dc.subjectнейронні мережі-
dc.subjectімітаційне моделювання-
dc.titleConstruction of an analytical method for limiting the complexity of neural-fuzzy models with guaranteed accuracyuk_UA
dc.title.alternativeРозробка аналітичного методу обмеження складності нейро-нечітких моделей гарантованої точності-
dc.typeArticleuk_UA
Appears in Collections:2019

Files in This Item:
File Description SizeFormat 
Sytnik.pdf1.13 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.