Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://lib.kart.edu.ua/handle/123456789/22860
Назва: Прогнозування технічного стану тягових редукторів електропоїздів нейромережею довгої короткострокової пам’яті
Інші назви: The forecasting of the technical state of the traction gearboxes of electric trains with long-short-term memory network
Автори: Пузир, Володимир Григорович
Михалків, Сергій Васильович
Ходаківський, Андрій Миколайович
Бульба, Владислав Ігорович
Puzyr, Volodymyr
Mykhalkiv, Serhii
Khodakivskyi, Andrii
Bulba, Vladyslav
Ключові слова: електропоїзд
прогнозування
нейромережа
тяговий редуктор
фракатальна розмірність
box counting dimension
electric train
forecasting
neural network
traction gearbox
Дата публікації: 2020
Видавництво: Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»
Бібліографічний опис: Пузир В. Г. Прогнозування технічного стану тягових редукторів електропоїздів нейромережею довгої короткострокової пам’яті / В. Г. Пузир, С. В. Михалків, А. М. Ходаківський, В. І. Бульба // Прогресивна техніка, технологія та інженерна освіта : матеріали XXI науково-технічної конференції. - Київ: КПІ ім. Ігоря Сікорського, 2020. - С. 129-132.
Короткий огляд (реферат): UA: Для здійснення прогнозування технічного стану тягових редукторів електропоїздів запропоновано використовувати нейромережу довгої короткострокової пам’яті. На кожному технічному обслуговуванні (ТО-3) реєструвалися вібраційні реалізації попередньо відібраних чотирнадцяти тягових редукторів і розраховувалася фрактальна розмірність покриття. Прогнозування технічного стану здійснювалось із 61-го ТО-3 і до 70-го ТО-3 з наступним порівнянням розрахованої та прогнозованої фрактальної розмірності. Після розбирання 6 тягових редукторів на потоковому ремонті (ПР-1) було виявлено недостатню кількість мастила в одному редукторі, знос ролика підшипника передньої кришки другого редуктора, тріщину кільця підшипника передньої кришки третього редуктора, відкол зуба шестірні четвертого тягового редуктора, руйнування підшипника п’ятого редуктора і тріщина зуба його шестірні та справний шостий редуктор. Установлена здатність нейромережі LSTM демонструвати нижчу середньоквадратичну помилку після оновлення.
EN: For the forecasting of the technical state, among the broadcast deterministic methods of exponential smoothing and trend analysis, the most effective long-short-term memory neural network (LSTM) was selected. During every 3rd level maintenance, the vibration signals of the previously selected fourteen traction gearboxes were recorded, and the box counting dimension was estimated. The forecasting of the LSTM neural network was done for the period since the 61st up to the next 70th 3rd level maintenance. After disassembling 14 traction gearboxes during the 5th 1st level current repair, the insufficient amount of a lubricant in the first gearbox, wear of a roller bearing of the front cover in the second gearbox, a crack of a bearing ring of the front cover in the third gearbox, a tooth break of a gear in the fourth traction gearbox, destruction of a bearing in the fifth gearbox and a tooth crack of its gear were detected. It was established that the LSTM neural network had a lower root-mean-square error when the information was updated.
URI (Уніфікований ідентифікатор ресурсу): http://lib.kart.edu.ua/handle/123456789/22860
Розташовується у зібраннях:2020

Файли цього матеріалу:
Файл Опис РозмірФормат 
Puzyr.pdf2.19 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.